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CHAPTER 1

Introduction

The aim of this course is to give some general concepts that found the main models of finance. This in order
to first, better understand the characteristics of financial products and second to to present models that allow
to describe the main features of financial markets.The purpose of a model is to give a representation of the
reality that allows to understand phenomena and to make predictions.

We begin by some naïve questions. Because simple interrogations are often necessary to understand clearly
what we talk about.

1.1. Questions

The first question is quite simple : what are financial products designed for?

1.1.1. Real position. The original purpose of financial assets is to transfer wealth through time or,
alternatively or simultaneously, to share risk to mitigate it.

The idea is very simple. The economic activity of an individual can lead, to him, to a particular income
stream (a so-called real position). This flow can eg be distributed over time in some special and uneven
way, or be conditioned by some random events. For example, a seller of glouttes on an international market,
knows his income two months after delivery, at a price that depends on the price of some foreign currency at
that date. He would like to insure his income immediately, so as to be sure of the amount of money he will
get in two months. He his ready to exchange a random cash flow against a sure one. To do so he buys, on a
financial market or over the counter (OTC), an asset that does the job : take the risk. Obviously this is not
free. But the individual feels adantageous to buy this asset.

Demand for financial assets is hence, at least initially, triggered by a need of risk coverage or transfer wealth
over time. But this coverage, or transfer, has itself a price, that can be fixed, for instance on a market on
which supply and demand are confronted.

We can hence summarize :

• A financial product first allows to exchange wealth through time : I would like to have one euro
on the 24th december (because I’d like to buy a gift for my grand-son). What does it cost today?
Here I don’t want a bottle of whisky, I want one "euro on the 24th december". The "euro on the
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24th december" is a particular good which is different of the "euro on the 1st november" (which is
useful to buy grave flowers). These two goods have not the same price today.
• A financial product also allows to exchange risk. I know that I will have a lot of euros if it rains

next week (because I sell umbrellas), and nothing if not (I don’t sell sun hats). I am ready to pay
something today to smoothe my wealth and have some money even when the sun shines.

1.1.2. Market makers. These definitions insist on the real initial position of the demander. But some
other agents intervene on this market although they have no initial real position. Their only role is to make
the market liquid. To be sure that any demand (justified by a real position), meets an offer. They are called
“market makers”, in the sense that they supply the demand at a price they define. The price of this supply
is obviously strategic.

In some sense, banks, insurance and other institutions are “financial intermediaries” : they offer counterparts
to demands (and supplies) originated by real positions.

One purpose of models is to provide methods to “price” financial assets in order the market makers can offer
a counterpart to agents.

One first goal of this course is to describe model that allows to “price” assets, that is to find formulas that
can give the price of a given asset.

But, more than that, we will also describe models that explain how prices endogeneously arise.

1.1.3. Models and collateral questions. We are going to study several types of models. We can
split them in two families :

• the arbitrage models : in these models we use a a particular condition of price equilibrium, the
arbitrage free condition. Under this condition we can derive a very important property on the price
structure. This is also called the “Risk Neutral Valuation” , RNV, of financial products.
• the behaviour models : in the behaviour models, we try to endogeneize prices. Here we will focus

on several hypothesis on individual expectations and on individual information that form supply
and demand.

The different models can be static, dynamic, discrete and continuous.

Other questions are, on the way, addressed in this course. One, for instance, is the question of market
efficiency, and, information revelation through prices. The question is, as soon as some people are better
informed, is that true that this information is immediately transfered to price so that, initially uninformed
people are, by so, finally informed.

In the same way we will try to study models that could explain speculative bubbles.

For the first lesson we just describe some characteristics of the market and give two very simple models that
can help us to understand complex ones.
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1.2. Assets

Financial instruments can be decomposed in three classes :

• debt assets : the issuer of the paper promises a given future cash flow to the holder.
• equity assets : the paper represents a share of a company and gives right to potential (and not

known in advance) dividends.
• currencies which are traded on the foreign exchange.

On the top of these basic “papers” one can imagine derivative assets.

• A derivative asset simply gives conditional cash flows that depend on the value of the underlying
asset. These derivatives can be traded on a market or on an “Over The Counter” (OTC) basis.

The following table gathers the main different assets :

Asset Class
Instrument type
Securities Exchange-trade derivatives OTC derivatives

Debt (LT>1year) Bonds Bond options or futures Interest rate swap, options
Debt (ST≤1year) Bills, Commercial paper Short term interest rate futures forward rate agreements

Equity Stock Stock options, equity futures stock options, exotic
FX (foreign exchange) - futures swaps

To these assets, it important to add the markets of commodities (gold, oil, sugar, wheat...) which were the
first ones to involve futures.

1.2.1. Equity assets : Stocks. A share is a title of ownership of a share of the capital of a company.
At issuance, the value of these securities is determined by society. Then, the securities are traded on a market
and the price is set according to supply and demand.

In addition, the holder receives a share of company profits as dividends. hence, from a pure financial
viewpoint, a stock is a financial paper that gives right to receive, in the future, cash flows corresponding to
the firm profits. Mathematically this amounts to a promise of random future cash flows.

Definition 1. (Notation) A stock is an asset which gives right to dividends d̃(t) or ( d(t, ω) , where ω is the
state of nature) at time t. Stocks are traded on an Exchange platform. Supply an demand determine prices.

• Euronext is the European exchange created in September 2000 by the merger of managing markets
stock exchanges of Paris, Brussels (BXS) and Amsterdam (AEX), Stock Exchanges of Lisbon and
Porto (BVLP) have been included in this group in 2001, LIFFE (London International Financial
Futures and Options Exchange) in 2002. In June 2006, Euronext announced a merger agreement
with the NYSE (New York Stock Exchange), merger became effective in April 2007. Nyse-Euronext
is a most important trading platform in the world.
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• Indexes

An index is generally used to follow the evolution of prices of stocks. An index is generally the cumulated
value of all the stocks of a given set of companies.

Most global stock markets offer indexes. The main French stock market indexes are:

- The CAC 40 is the main index of the Paris market. It is calculated from the prices of 40 stocks selected
from hundred companies generating a high volume of trade on Euronext Paris.

- The CAC Next 20 includes the next twenty companies.

- The SBF 120 is calculated from the stocks of the CAC 40 and CAC Next 20 and 60 stocks of the first and
second market.

- The SBF 250 calculated from 250 companies of all sectors. It is composed of the CAC 40 and CAC Next
20 and the CAC Mid 100 and CAC Small 90.

Obviously let us quote the well known international indexes :

- The Dow Jones Industrial Average. It is the oldest index in the world. It is composed of 30 major industrial
stocks of the New York Stock Exchange (blue chips). For historical reasons, its value is the arithmetic average
(not weighted by capitalization) assets that compose it.

- The SP 500 lists the 500 largest companies on Wall Street. Its value is more representative than the Dow
Jones.

- The Nasdaq Composite Index is an index calculated from all the values of NASDAQ (second equity markets
of the United States after NYSE). It contains more than 300 assets, but are not limited to technology.

- The Nikkei 225 index of leading the Tokyo Stock Exchange. Its value is calculated as the Dow-Jones.

- The Footsie (FTSE 100) is the main index of the London Stock Exchange.

- The DAX is the main index of the Frankfurt Stock Exchange consists of 30 blue chip stocks.

1.2.2. Debt : Bonds. A bond is a negotiable instrument issued by a corporation or a public authority
for a loan. A Bond is defined by the name of the issuer, interest rate, maturity date, the currency in which
it is issued, a periodicity of coupon, the date of issue. Repayment terms and the method of payment of the
lenders are contractually fixed, the remuneration may be fixed or variable (indexed to the rate of interest
and not on the outcome of the company).

From a mathematical point of view, a fixed rate bond is an asset that promise sure future cash flows.

Definition 2. (Notation) a Bond is associated to a loan issued (by a borrower) at date t0 for a length
(maturity) T . It is defined by the sequence of future “sure” cash flows (for the holder) d(t) (coupons) and,
when T is finite, a final payment h(t0 + T ) , (in this case t > T + t0 ⇒ d(t) = 0) .
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- “ultimately” or “In fine” bonds are defined by a face value (nominal or principal) Nand a nominal rate r0

per period such that d(t) = N ∗ r0 for t < t0 + T and h(t0 + T ) = N(1 + r0).

- Constant annuities are bonds such that h(t0 + T ) = d(t)

- A perpetuity is a bond for which T = +∞ .

- The nominal zero-coupon at date t0 with maturity T is bond is such that d(t) = 0 and h(t0 + T ) = N = 1

Bonds are exchanged on the market. Bonds heve different names according to their maturity :

• short term (bills): maturities between one to five year; (instruments with maturities less than one
year are called Money Market Instruments)
• medium term (notes): maturities between six to twelve years;
• long term (bonds): maturities greater than twelve years.

Variable rate bonds, are on contrary a promise of “random” cash flows contingent to some interest rate.

Nominal interest rate, nominal value, and conditions of repayment hence allows the calculation of coupon that
the borrower agrees to pay annually (usually in the euro area), quarterly (especially English and American
bonds) or with a shorter periodicity. Bond prices are expressed in percentage of the nominal value. Thus,
a bond par value 10,000 euros (price cut) is not priced 9900 euros, but 99%. Even if, theoretically, a fixed
rate bond is sure, there is a risk of default of the issuer. So, since the bond market is being internationalized,
investors need ratings to measure the risk of issuer default.

States issue bonds in order to raise funds on the markets. The main European bonds are OAT (France),
Bonos (Spain), Olo (Belgium), Btp (Italy) Guilt (UK), Bund (Germany).

1.2.3. Swap. A swap is a contract in which two counterparties agree to exchange two sets of cash flows
(usually debt or currency) between two dates. Unlike trade in financial assets, trade in financial flows are
instruments dealed “Over The Counter” OTC without affecting the balance sheet. The synthetic product
resulting from the exchange reflects the characteristics sought by the investor. It amounts to accessing
a synthetic product not available on the regular market. For example, two parties may agree to pay at
predetermined times the difference between a fixed rate and a variable rate.

1.2.4. Forwards and futures. A futures contract is a commitment to buy or sell at a certain maturity
T an amount of an asset (securities or commodities) negotiated at the date of commitment, but payable at
maturity T .

Definition 3. The forward contract negociated at t0 for a term T sets at date t0 a forward price f(t0, T )

for a given quantity of a given good. Hence if p(t) is the spot price at date t of this good, the seller of the
forward contract will earn f(t0, T )− p(T ) at T payed by the buyer.
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Then we see that a forward contract involves a final payment from one party to the other which amounts to
the difference between spot price and forward price.

Futures contracts are traded on regulated markets as opposed to forwards, which are traded "over the
counter". The underlying Futures are either physical assets (futures commodity having existed since antiq-
uity) or financial assets (such futures appeared in the early 1970s). Regulated markets (such as the Chicago
Mercantile Exchange Group, NYSE Euronext LIFFE) offer standardized futures contracts with respect to
the amounts, timing and quality of the underlying assets. They have clearinghouses that serve as interme-
diaries, so that the buyer has in front of him these clearinghouses as a seller, and vice versa for the seller.
At any date the difference f(t− 1, T )− f(t, T ) is payed by the buyer to the seller. Daily payments between
winners and losers are made exclusively through the clearinghouse. Counterparty risk being transferred, the
guarantee of futures contracts is thus much more important against the risk of default by the losing party
than for contracts OTC (Forwards for which the loss is disbursed at maturity). Futures on physical assets
are futures contracts whose underlying assets are commodities : agricultural products (beef, pork, dairy,
wheat, mas, soybean, sweet, wood, etc.). , metals (gold, silver, copper, aluminum, zinc, palladium, etc..)
and matters relating to energy (gas, oil, coal, electricity). Futures on these physical assets, which enable
producers and traders to hedge against the risk of price change, most often give rise to the delivery of the
underlying commodity unlike financial assets.

1.2.5. Options.

Definition 4. An option is a contract between two parties and allow one of the parties to ensure, on
payment of a premium, the right (but not the obligation) to buy or sell to the other party a particular asset
at a predetermined price at the end of a certain period (called European options) or during a certain period
(American options). The underlying asset can be a financial asset (stock, bond, treasury bond, futures,
currencies, indices, etc..) or a physical asset (agricultural or mineral). The value of the option is the amount
of the premium that the option buyer is willing to pay the seller. An option is said to be negotiable if it can
be traded on a regulated market. Otherwise, one speaks of OTC trading.

1.2.6. Structured Products. A structured product is a product designed by a bank to meet the
needs of its customers. This is often a complex combination of conventional and derivatives. This will, for
example, a fixed-rate investment with participation rising or falling prices of a basket of shares. They can
take various legal forms and are traded OTC. As a structured product can not be traded on a market, its
price is determined using mathematical models reproduces the behavior of the product over time and different
market trends. These are often products with high margins.

1.2.7. Foreign exchange. In the foreign exchange market, currencies (money) are exchanged.
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1.3. Functioning of trading

1.3.1. Market makers. Some agents have no initial real position. They intervene on the market only
as “counterparty” to be sure that “real position” agents will find a counterparty to trade with.

Hence a so called market maker is a company, or an individual, that quotes both a buy and a sell price in a
financial instrument. For a given asset a market maker sets hence two prices :

• Ask : the (floor) price they are ready to sell the asset.
• Bid : the price (ceiling) they are ready to buy.

Ask price is larger than bid price. One says that there is a “bid-ask spread”. A market maker hence presents
simultaneously a supply and a demand curve. Both are horizontal and the demand curve is below the supply
one.

There are several factors that contribute to the difference between the bid and ask prices. The most evident
factor is a security’s liquidity. This refers to the volume or amount of stocks that are traded on a daily basis.
Some stocks are traded regularly, while others are only traded a few times a day. The stocks and indexes
that have large trading volumes will have narrower bid-ask spreads than those that are infrequently traded.
When a stock has a low trading volume, it is considered illiquid because it is not easily converted to cash.

Another explanation of the bid-ask spread Bid ask spread is the asymmetry of information among traders.
This is detailed with an example of microstructure models (Glosten-Milgrom). (see chapter on behaviour
models).

1.3.2. Orders. When you want to buy or sell an asset you submit an order. There are roughly speaking
two kinds of orders : “market orders” (no limit) and limit orders. Market or no limit means that you are
ready to sell or buy, whatever the price, a specified quantity of a given asset. Limit order means that you set
a ceiling (cap) price for buying or a floor price for selling. There exists also “stop orders” that are inverted
limit orders : sell (buy) when the price falls (rises) below (above) some threshold.

• Main trading systems
– Order-driven : traders place orders before prices are set (either by market makers or by a

centralized mechanism or auction).
∗ Trading can be continuous or in batches at discrete intervals. In many continuous systems

the order submission is against a limit order book where orders have accumulated. Batch
auction to open continuous trading (e.g. Paris Bourse, Deutsche Börse, Tokyo Stock
Exchange).

– Quote-driven : market makers set bid and ask prices (i.e. the price at which they are willing
to buy and sell the asset) and traders submit orders.

– Many trading mechanisms feature both systems.
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• Order book

Orders are ranked in the following way : highest buy orders are put on the top of the list of buy orders, and
are ranked decreasingly. Lowest sell orders are put on the top of sell orders and are ranked increasingly.

Call (vi, bi) the ith buy order (ready to buy a quantity bi for a price less than vi) and (cj , sj) the jth sell
order . We have v1 ≥ v2 ≥ ...vi ≥ vi+1and c1 ≤ c2 ≤ ... ≤ cj ≤ cj+1 (v1 = +∞ in case of no limit buy order,
and c1 = −∞ in case of no limit sell order)

Practically these orders are gathered in the “order book” and ranked in the previous way.

• Trading session

There are three periods : pre-opening and fixing, trading session, closing and fixing. During pre-opening
orders are gathered in the “order book”.

1.3.3. Order book and opening fixing. An order book gathers sell and buy orders, when the market
is closed the order book accumulates orders : high price buy orders and low price sell orders are placed on
the top.

Consider for instance this (fictious ) order book (real order books involve prices with 2 or even 3 decimals).
On the left are buy orders, on the right sell orders.

In the following order book the second buy order is a limit price order : ready to buy 50 units at a (cap)
price 130.

The equilibrium price is 118 : at this price buyers are ready to buy 600 units and sellers 540. That means
that only 540 units will be effectively sold at 118. After the fixing, the order book is as follows. Top orders
are executed and remain at 118, 60 to buy.
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On can draw supply/demand curves very easily.

1.3.4. Intraday and closing. Then orders are executed (if there is a counterpart) as they come in the
order book.
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1.4. Two first models

1.4.1. The miracle of complete and perfect markets : the Risk Neutral Valuation. The main
idea of “risk neutral valuation” is that market prices of assets give information on the “perception” of the risk.
Give an example.

Assume there are two bonds. The first one is issued by a government : its maturity is one year, it nominal
is R1 =100 euros and its price is B1 = 90. That means that its yield is r = 100

90 − 1 = 11, 1% (which is very
high but very convenient for simple computations).

B1 = 90, 1 + r1 =
100

90

The second one is a corporate bond issued by a corpotate, its repay is also 100 euro in one year, but there is
a risk of default. In case of default the repay will be only 80. The repay R̃2 is hence random. Its nominal
yield must hence be larger than the risk-free bond because investors demand a better return to compensate
this risk of default.

Obviuously B2 is larger than 90
10080 = 0, 8 × 90 = 72 : if I buy this bond I am sure to get at least 80 that I

can also obtain by buying 0,8 bonds of type 1. But obviuously the price cannot be lager than 90: since 90
allows to get surely 100 at date 1. We can claim :

72 ≤ B2 ≤ 90

Intuitively, B2 close to 72 means that there is a high “perceived” probability of default. Conversely, if it is
closed to 90, this perceived probability is quite low. We can hence write :

B2 = Q̂× 72 +
(

1− Q̂
)

90

Or equivalently :

Q̂ =
90−B2

18

Where Q̂ is the “perceived probability of default”.

We can also write :

B2 =
90

100

[
Q̂× 80 +

(
1− Q̂

)
100
]

=
1

1 + r1
EQ̂
[
R̃2

]
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Notice that this perceived probability is not necessary the “true” probability (see below). It simply results
from the perception of risk by the market. This perceived probability is called : the Risk Neutral Probability.

Proposition 5. The price of each bond is equal the discounted expected repay under the Risk Neutral Prob-
ability (RNP). The discount factor is 1

1+r1
= 90

100 , and the RNP is Q̂ = 90−B2

18

Assume that on top of these two bonds, there is a new financial product : a CDS (credit default swap).
This product promises 1 euro in case of default of the corporate. In some sense, this is an insurance product
because it indemifies loss due to default. Consider the following portfolio strategy : buy the second bond and
immunate risk by buying 20 CDS. This strategy gives exactly 100 euros in one year, and hence is completely
identical with the bond 1. The price of this portfolio must then be equal to B1.

B2 + 20C = B1

This gives the price of the CDS :

C =
B1 −B2

20
=

90

100

[
Q̂× 1 +

(
1− Q̂

)
× 0
]

The important point is that the price of the CDS (which is an insurance product) can be computed without
knowing the true probability of default, as soon as we know the prices of the underlying asset and the risk
free rate (government bond yield)!
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We get hence the interesting result :

Proposition 6. the prices of the three assets are equal to their expected present values computed with the
“Risk Neutral Probability”.

This result is the very basis of all the “pricer” models developped in stochastic finance.

Proposition 7. Models based on “Risk Neutral Valuation” rely on the property that there must exist a
probability distribution (Risk Neutral Probability) such that the price of any existing or composite asset is
equal to the expected present value of its future cash flow.

Mathematically, things appear quite simple. We are in a world where there are only two states of nature :
default of the corporate, no default of the corporate. The repay in one year can be described by a (line) two
components vector, each component being the repay in the corresponding state of nature. For the risk-free
bond it is d1 = (100, 100) whereas it is d2 = (80, 100) for the second bond and dCDS = (1, 0) for the CDS.
Clearly these 3 vectors are not independent since one of them is a linear combination of the two others :

d1 = d2 + 20dCDS

Let D the matrix of the repay at date 1 :

D =

[
d1

d2

]
=

[
100 100

80 100

]
A composite asset (or a portfolio) is a (column) vector θ, tθ = (θ1, θ2) of quantities of the assets. A portfolio
θ gives the repay :
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tθD

We say that the market is complete in the sense that any (line) vector of repay d = (a, b) can be obtained
with a portfolio. Indeed, A being regular we can write:

tθD = d⇒t θ = dD−1

The price of the portfolio giving d is hence :

P =t θB = dD−1B =
(
D−1B

)
1
a+

(
D−1B

)
2
b

But there are two interesting vectors of repay : d(1,0) = (1, 0) (which is precisely the CDS) and d(0,1) = (0, 1)

(which is a kind of a call option). The first one is equal to d1−d2
20 , that is the portfolio

(
1
20 ,−

1
20

)
, and the

second to 1
20

(
d2 − 80

100d1

)
, that is the portfolio

(
− 4

100 ,
1
20

)
.

The “arbitrage free “ hypothesis implies that the two prices of these two particular portfolios must be positive
(since these two portfolios give positive returns at date 1).

This means that the price of any portfolio is a positive linear combination of the repays.

This implies that
(
D−1B

)
1

= B1−B2

20 and
(
D−1B

)
2

= 1
20

(
B2 − 80

100B1

)
are positive. But their sum is equal

to B1

100 = 1
1+r1

. So that we find the RNP :

Q̂ =
100

B1

(
D−1B

)
1

= (1 + r1)
(
D−1B

)
1

=
100

90

(
90−B2

20

)
=

90−B2

18

RNP versus objective probability
Is the RNP the “true” probability of default? Assume for instance that B2 = 81 so that the RNP is Q̂ = 1

2 .
And consider two portfolios : the first one with 10 corporate bonds and the second one with 9 government
bonds. The values of both portfolios is 810. But one is risky and the second is not. Intuitively the first one
must have a higher “objective” expected return (a risk premium) :

10× [Π× 80 + (1−Π)× 100] ≥ 9× [Π× 100 + (1−Π)× 100]

That is :
Π ≤ 1

2
= Q̂

The following model will make things more precise by relating the true probability and the RNP

1.4.2. Supply, demand and risk aversion : where the risk neutral probability comes from.
Consider a very simple “market” where there are only two individuals A and B. A is an entrepreneur. His
activity provides him a random net income (profit). There are two “states of nature” (events) : the good state
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where the income is large WH and the bad state where it is low WL < WH . B is a lady who has a constant
income w. In this economy the total income is hence WH +w or WL +w. A has a real initial position : he is
exposed to a risk and would like to mitigate it, that is to insure his income. What means insure? That means
that he would like to have a final income X such that XH (final income when WH) is not very different than
XL (final income when WL). He can try to trade with B by selling him some share of his firm. If he sells a
share α at a price S we will have the following final situation

• A will have XL = αS + (1 − α)WL = WL + α (S −WL) and XH = αS + (1 − α)WH = WH +

α (S −WH)

• And B YL = w − α (S −WL) and YH = w − α (S −WH)

In somme sense, by doing so, A decreases the risk he is exposed to : the gap between high and low income
is XH −XL = (1− α)(WH −WL) ≤WH −WL

For a given price, S, we define the supply αS (S) being the share that A is ready to offer, and the demand
αD (S), as the share, B is ready to buy at this price.

What are the equilibrium values S∗ of S? More precisely, which values of S are such that the demand can
be equal to the supply?

First of all we necessarily have WL ≤ S∗ ≤WH .

Indeed S∗ < WL is surely not an equilibrium : for α ≥ 0 this price would give him an income always
lower than in the initial position! His supply cannot be positive : at that price he would be ready to BUY
supplementary shares. B at this price is also ready to buy since it gives her always a better income than her
initial position.

In the same way, S∗ > WH cannot be an equilibrium price because α ≥ 0 would give her an always lower
income.

S S < WL WL ≤ S ≤WH WH < S

A’s supply 0 ≥ 0 > 0

B’s demand > 0 ≥ 0 = 0

Proposition 8. if S∗ is an equilibrium price, then WL ≤ S∗ ≤WH , or equivalently there exists 0 ≤ qL ≤ 1,
0 ≤ qH ≤ 1 / qH + qL = 1 and qHWH + qLWL = S∗. Or equivalently :there existsts qH 0 ≤ qH ≤ 1

/S∗ = WL+qH(WH−WL). The weight can be interpreted as probabilility : this is the Risk Neutral Probability.

But obviously, there are a lot of candidates for S∗. The equlibrium value of S depends on A and B “behaviour”.
At which price S A is ready to sell α and B ready to buy α?

At this time of the reasonning, there is an interesting remark. When you look at these two equations,
qH + qL = 1 and qHWH + qLWL = π where 0 ≤ qL ≤ 1, 0 ≤ qH ≤ 1, you have the idea to replace qH and
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ql by the probabilities πH and πL of the two sates of nature. If you do so S is simply equal to the expected
value of the corporate! Is that an equilibrium price?

There is an important property if S = Eπ (W ): whatever α, the expected income is not changed for both
individuals :

πHXH + πLXL = πH (αS + (1− α)WH) + πL (αS + (1− α)WL) = αEπ (W ) + (1− α)Eπ (W ) = Eπ (W )

πHYH + πLYL = πH (w − αS + αWH) + πL (w − αS + αWL) = w − αS + α (πHWH + πLWL) = w

Look at B. She starts with a sure income w if she buys α shares at price S = Eπ (W ) she will have a random
income with an unchanged expected value. So, at this price, every α 6= 0 increases the risk borne by B
without increasing the average income. We will assume that B is strictly risk-averse, in the sense that she
would accept to take a risk only if her expected income is strictly increased. If this is the case, she will not
accept any trade at the price S = Eπ (W ) : αD (Eπ (W )) = 0 .

Look at A. must be enclined to sell. Indeed, if we assume that A is himself risk-averse, he will surely offer
α = 1 if the price is Eπ (W ) : by doing so he would get the same average income and cancell the risk.

Hence Eπ (W ) is not an equilibrium price since, 0 = αD (Eπ (W )) 6= αS (Eπ (W )) = 1

So, if we want B buy some share, the price must be such that her expected income is increased : we must
have S∗ < Eπ (W ) or equivalently qH < πH .

Proposition 9. When traders are risk-averse, The Risk Neutral probability q is such that qH < πH (and
qL > πL).

We feel that we need to model the attitude towards risk of A and B to model her demand in the risky asset.
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• Risk aversion

How can we be more precise on risk aversion? The idea is very simple : one individual is risk-averse if he
accepts to take risk only if his average income icreases. Equivalently, average income being unchanged, a
risk-averse individual always prefers when there is no risk at all.
Take an individual with a sure income w0. Assume he is proposed the choice between two options : can stay
with this income or take a risk that can increase or decrease his income : with a probability 1/2 he gets an
income of w0 + +a+ x and with probability 1/2 he gets w0 + a− x where a ≥ 0 and x 6= 0. The individual
has hence the choice beween two “lotteries” :

1/2 1/2

lottery S w0 w0

lottery Ra w0 + a+ x w0 + a− x

Definition 10. We say that the individual is risk averse if , for all x, he prefers the lottery S to the lottery
R0 (where a = 0).
In order to make Ra more attractive it is necessary to propose the player a lottery with a positive value of
a. The value of a such that Ra is equivalent to the sure lottery is a kind of risk premium: the expected value
must be increased to compensate risk.

One way to capture risk aversion is to assume that the individual values lotteries by computing the expected
value of som concave function u of the payments :

Utility of S = 1
2u(w0) + 1

2u(w0) = u (w0)

and
Utility of Ra= 1

2u(w0 + a+ x) + 1
2u(w0 + a− x)

Proposition 11. If u is continuous, increasing and concave then there exists a ≥ 0 such that a ≥ a ⇐⇒
Utility of S≤Utility of Ra.

Indeed : if u is concave then 1
2u(w0+x+a)+ 1

2u(w0−x+a) ≤ u
(

1
2 (w0 + x+ a) + 1

2 (w0 − x+ a)
)

= u(w0+a)

For a = 0, the utility of R0 is lower than that of S, for a = x, it is larger.

• Risk sharing

Selling shares to B, amounts to risk sharing between A and B. A decreases income risk whereas B increases
it.
Just look at the values of utilities of the final wealth of our two individuals. For A, the utility if he sells α at
the price S is :

UA(S, α) = πHuA (αS + (1− α)WH) + πLuA (αS + (1− α)WL)

For B :

UB(S, α) = πHu (w − αS + αWH) + πLuA (w − αS + αWL)
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What is the supply function of A? In other words, how many shares is he ready to sell if the price is π? The
answer is, the value of α that maximizes UA for the given value of π.
We have hence, computing the derivative of UA with respect of α:

πHu
′
A (XH) (S −WH) + πLu

′
A (XL) (S −WL) = 0

The same reasonning for B :

πHu
′
B (YH) (WH − S) + πLu

′
B (YL) (WL − S) = 0

The final allocation is an equilibrium if the supply is equal to the demand :

Claim 12. X∗H , X
∗
L, Y

∗
H , Yl , S

∗ and α∗ are at equilibrium if :

πHu
′
A (X∗H) (S∗ −WH) + πLu

′
A (X∗L) (S∗ −WL) = 0

πHu
′
B (Y ∗H) (WH − S∗) + πLu

′
B (Y ∗L ) (WL − S∗) = 0

X∗H + Y ∗H = w +WH

X∗L + Y ∗L = w +WL

X∗H = α∗S∗ + (1− α∗)WH

X∗L = α∗S∗ + (1− α∗)WL

The first equation is quite interesting : we can rewrite it :

S∗ = πH
u′A (X∗H)

πHu′A (X∗H) + πLu′A (X∗L)
WH + πL

u′A (X∗L)

πHu′A (X∗H) + πLu′A (X∗L)
WL

The second one is very similar :

S∗ = πH
u′B (Y ∗H)

πHu′B (Y ∗H) + πLu′B (Y ∗L )
WH + πL

u′B (Y ∗L )

πHu′B (X∗H) + πLu′B (X∗L)
WL

We immediately see that π is somewhere in between WL and WH but lower than EpW = pHWH + pLWL as
soon as XH ≥ XL . Indeed in this case, by concavity of u, u′(XH) ≤ u′(XL).

Proposition 13. At equilibrium the price is S∗ = qHWH + qLWl with :

qH = πH
u′A (X∗H)

πHu′A (X∗H) + πLu′A (X∗L)
= πH

u′B (Y ∗H)

πHu′B (Y ∗H) + πLu′B (Y ∗L )

qL = πL
u′A (X∗L)

πHu′A (X∗H) + πLu′A (X∗L)
= πL

u′B (Y ∗L )

πHu′B (X∗H) + πLu′B (X∗L)

Exercise 14. Solve the above model with CARA utility functions : ui(s) = − exp−ρis.



CHAPTER 2

Static model : arbitrage free condition

In this chapter we propose a generalization in a static case of the first small model we have described above.
The main result is the following :

The arbitrage free condition implies :
There exists some positive weight such that the prices of existing assets and the price of any asset that can
be built with existing assets (portfolios) is simply equal to the weighted sum of its cash flows! If the market
is “complete”, i.e. any “cash flow profile” can be obtained through some portfolio, this weighting vector is
unique. This principle is the basis that we call “risk neutral valuation”.

2.1. No arbitrage condition in a static model

2.1.1. Arbitrage. Consider the very simple model with two date : date 0 and date 1. At date one,
there are several “states of naure”, these states of nature capture the fact that, at date 0, future is not known,
but the various possibilities are known. Let Ω the (finite ) set of possible states of nature at date 1. We set
CardΩ = N .

At date 0 several assets are available. The asset i gives rise to a payment, at date 1, di(ω) in the state ω.
Let pi the price at date 0 of this asset : paying pi allows to get di(ω) at date 1 in the state ω.

We note θ = (θ1, θ2, ..., θK) a portfolio, θi is the quantity of asset i owned by an investissor. The price of a
portfolio is

∑K
i=1 piθi and its payment at date 1

∑K
i=1 θidi(ω) in the state ω.

We define an arbitrage porfolio in the following manner :

Definition 15. θ 6= 0 is an arbitrage portfolio if W0(θ) = −
∑K
i=1 piθi > 0 and W1(θ, ω) =

∑K
i=1 θidi(ω) ≥ 0

for all ω.

Let di the raw vector [di (ω1) , di (ω2) , ..., di (ωN )] and D the matrix

 d1

.

dK

. The row vector of payment at

date 1 is W1(θ) =t θD and at date 0 W0 (θ) = −tθp.

In the above definition, Wt , t = 0 or 1, is the flow of income at date t. If there exists an arbitrage portfolio,
that means that one can make money at date 0 without any counterpart at date 1. One says that an arbitrage

20
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portfolio “is a free lunch”. The no arbitrage condition implies that there does not exist arbitrage portfolios.
If the market is at equilibrium, then there cannot be “free lunch”. We will assume, hence, that there does
not exist arbitrage portfolios.

A first very clear and obvious consequence of such an assumption is that if two portfolios give the same
returns then they must have the same price. Indeed, assume that two portfolios θ and θ′ are such that
tθ.D =t θ′.D then if we had tθ′p <t θp then θ′ − θ would be an arbitrage portfolio.

This have a very practical consequence :

Definition 16. “arbitrage pricing”, that is computing the price of a given “new” asset, consists in finding a
portfolio of the existing assets that gives the same return. On says that the portfolio replicates the asset.

But this is possible if one can find a portfolio that gives the same return. So, a very important case must be
enhanced : the case of complete markets where any date 1 cash-flow profile can be obtained through existing
assets :

Definition 17. The market is complete if any new asset (that is any profile of payments W1(ω) , ω ∈ Ω can
be replicated :

∀W1(ω), ∃θ ∈ RK ,

K∑
i=1

θidi(ω) = W (ω)

In matrix notations : ∀W1 ∈ RN , ∃θ ∈ RK ,t θD = W1

In a complete market there must be as many assets as numbers of states of nature : K ≥ N . Moreover the
linear application θ 7−→ W1 (θ) mapping RK in RN must be surjective, so that one can extract a N × N
regular matrix A from D. So that the portfolio associated to W is tθ = WA−1.

We have the very important following proposition that characterizes markets where there is no arbitrage
possibility.

Proposition 18. There does not exist arbitrage portfolio, in other words the market is “arbitrage free”, if
and only if prices and payments are such that there exists a family q of positive numbers q(ω) such that :

∀i, pi =
∑
ω∈Ω

q(ω)di(ω)

The coefficients q(ω) are called state pseudo-prices. Moreover, if the market is complete then q is unique.

The proof of this proposition is quite simple when the market is complete. Indeed, if the market is complete
there always exist q such that ∀i, pi =

∑
ω∈Ω q(ω)di(ω), that is p = Dq, or after extracting the regular

matrix A, p = Aq. Obviously, in that case we must have q = A−1p. But then, the ith component, q (ωi) is
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simply the price of the asset giving 1 in state ωi and 0 otherwise! If the market is arbitrage free this price
cannot be negative.

When the market is not complete, the proof is more sophisticated and can be found is the appendix of the
chapter.

2.1.2. Pricing. It is interesting to use the formula above to compute the price of a portfolio. Indeed,
we have for a portfolio θ :

−W0(θ) =t θp =
∑
i

θi
∑
Ω

q(ω)di(ω) =
∑
Ω

q(ω)W1(θ, ω)

That means that the value at date 0 of the portfolio is simply the weighted value of its payments computed
with the weights q.

This formula is the one one uses when a financial product can be obtained by a combination of existing assets
(one says replicated).

When there is a risk-free asset whose yield is r, the no arbitrage condition gives :

1 =
∑
Ω

q(ω)(1 + r)

Let then q̂(ω) = (1 + r)q(ω) we have :

Proposition 19. If there exists a risk-free asset, then for any portfolio we have :

−W0(θ) = θ.p =
1

1 + r

∑
Ω

q̂(ω)W1(θ, ω)

where ∑
Ω

q̂(ω) = 1

q̂(ω) is called a “risk-neutral” probability of the event ω and the formula above reads : the value of the portfolio
is the discounted expected value of its cash flow (under some risk-neutral probability). Note that q̂(ω) is not
uniquely defined if the market is not complete.

If the market is complete, then any income flow W (ω) at date 1 can be priced :
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Proposition 20. In a arbitrage free complete market, there exists a unique family of positive weights q (ω)

such that the value at date 0 of an income flow W1(ω) at date 1 writes :

P =
∑
Ω

q(ω)W1(ω)

Tf ther is a risk-free asset with yield r : then the formula writes :

P =
1

1 + r

∑
Ω

q̂(ω)W1(ω) =
1

1 + r
Eq̂ [W1]

Where q̂ (ω) = (1 + r) q (ω) is the Risk-Neutral Probability.
One says that the value of an asset is equal to the the expected discounted value of its cash flows computed
with the risk-neutral probability.

2.1.3. Example : The model of Cox Ross and Rubinstein with 2 dates. In this model there
are two assets and two states of nature Ω = {u, d}. The risk free asset has a yield r. The other asset is risky.
Its price at date 0 is S0 and the cash obtained at date 1 is either low , S1(d) or high, S1(u).

The equations giving the weigths or state prices are hence (we write that present prices are the weighted
sums of future values) :

1 = (1 + r)q(u) + (1 + r)q(d)

S0 = q(u)S1(u) + q(d)S1(d)

There equations have positive solutions if and only if :

S1(d)

S0
≤ 1 + r ≤ S1(u)

S0

And the market is complete if S1(d) 6= S1(u) .

Finally the state prices are :

(1 + r)q(u) =
1 + r − S1(d)

S0

S1(u)
S0
− S1(d)

S0

=
(1 + r)S0 − S1(d)

S1(u)− S1(d)

(1 + r)q(d) =

S1(u)
S0
− (1 + r)

S1(u)
S0
− S1(d)

S0

=
S1(u)− (1 + r)S0

S1(u)− S1(d)
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2.1.4. Optimal hedging. Assume a financial institution sells a financial product which promisesW1(ω)

at date 1. Assume the price is P . What is the optimal strategy (hedging and pricing) such that the bank
will be able to meet his commitment. As he receives P he can buy ∆ risky assets and invest the remaining
P −∆S0 on the risk-free asset. This strategy gives :

{
W4P1(d) = (1 + r) (P −4S0) + ∆S1(d)

W4P1(u) = (1 + r) (P −4S0) + ∆S1(u)

In order to be hedged, we must have W1(ω) = W4P1(ω) for both ω = u and ω = d. This gives :

 ∆ = W1(u)−W1(d)
S1(u)−S1(d)

P = 1
1+r

(
S1(u)−(1+r)S0

S1(u)−S1(d) W1(d) + (1+r)S0−S1(d)
S1(u)−S1(d) W1(u)

)
The above solution gives the price as expected (as the weighted sum of future values) and also the so called
∆ hedging : the quantity of assets that must be bought to immunate risk. We can remark that we have also
:

∆ =
∂P

∂S0

2.2. Mathematical appendix

To derive the main result on no arbitrage theory we need some maths. The following proposition is known
as “Convex separation theorme”. It tells us that if we consider a point outside a closed convex set, one can
separate it from this set by an affine hyperplane.

2.2.1. Convex separation tehorem.

Proposition 21. in an Hilbert space H (vect space with a norm coming from a scalar product, and complete),
if C is a closed convex subset of H, x in H but not in C, then there exists h in Hsuch that , ∀y ∈ C, h.x < h.y

Proof. let P (x) the projection of x on C. P (x) = arg min
y∈C
‖ x− y ‖ .

It can be shown that this projection exists and is unique :

- it indeed exists :let d = inf
y∈C
‖ x− y ‖; obviously, d > 0.

Take a sequence yn in C such that d2 ≤‖ x− yn ‖2≤ d2 + 1/n

we have (by the equality of the median) : ‖ x− (yn+ym)
2 ‖2 + 1

4 ‖ yn − ym ‖
2= 1

2 ‖ yn − x ‖
2 + 1

2 ‖ ym − x ‖
2

(yn+ym)
2 ∈ C (convex)

we have hence ‖ x− (yn+ym)
2 ‖2≥ d2 ,and hence : 1

4 ‖ yn − ym ‖
2≤ 1

2n + 1
2m .
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The sequence yn is a Cauchy seq and then converges towards y which lies in C (closed) and is such that
‖ x− y ‖= d

- Unique : let to the reader

We have :

∀y ∈ C (x− P (x)) .(y − P (x)) ≤ 0,

indeed ‖ ty+(1−t)P (x)−x ‖2=‖ t (y − P (x))+P (x)−x ‖2= t2 ‖ y−P (x) ‖2 +2t (y − P (x)) . (P (x)− x) + ‖
P (x)− x ‖2

as ‖ ty + (1− t)P (x)− x ‖2≥‖ P (x)− x ‖2 (since P (x) is the closest y in C)

we have t ‖ y − P (x) ‖2 +2 (y − P (x)) . (P (x)− x) ≥ 0 for all t in [0,1] and y in C.

And hence (y − P (x)) . (P (x)− x) ≥ 0

take then h = (P (x)− x)we have ∀y ∈ C h.(P (x)−y) ≤ 0, that is h.(h+x−y) ≤ 0,that is h.y ≥ h.x+ ‖ h ‖2

that is h.y > hx �

2.2.2. proof of proposition. It can be shown that the subset C of RK of vector such that v ∈ C ⇐⇒
∃λ ∈ R+N , vi =

∑
Ω λ(ω)di(ω) , is a closed (not trivial) convex (trivial) set.

Assume then that p /∈ C.

That would mean that Proposition 14 does not hold.

If so the convex separation theorem says that there exists h in RK such that ∀v ∈ C, h.p < h.v.

At this step it is important to remark that this implies ∀v ∈ C, h.v ≥ 0. Indeed if it were not the case there
would exist v0 in C such that h.v0 < 0, as kv0 ∈ C for all k ≥ 0, h.(kv0) = k(h.v0) would go to −∞ for k
going to +∞ but that woud contradict h.p < h.(kv0).

Moreover, we have infC (h.v) = 0 since 0 ∈ C. This implies h.p < 0. So h is an arbitrage portfolio.



CHAPTER 3

Dynamics (finite discrete models)

In this chapter we generalize the previous model to an intertemporal framework. Here we will assume that
the horizon is finite, T , and that time is discrete t = 0, .1 . . . T . In the same way, uncertainty is modelled
through finite sets of states of nature. In this framework we will derive the main result : the price of an asset
is equal to the expected present discounted value of its payments. The expectation being computed with
some “risk neutral” probability.

3.1. The tree of states of nature

We will model uncertainty as following. At date 0 there is one unique state of nature. At date 1 several
states of nature are possible

Ω1 =
{
ω1

1 , · · ·ωN1
}
, for each state of nature ωi1 of Ω1, several sates of nature are possible at date 2, and so on

up to T . Call Ωt the set of possible states of nature at date t . We can define a “successor” relation between
these states of nature.

Definition 22. At each date the set of states of nature is Ωt. We say that ωt+1 in Ωt+1 is a successor of ωt
in Ωt, ωt+1 > ωt , if ωt+1 is one of the possible states at date t+ 1 if the realized state of nature at date t is
ωt.

In a tree structure, for all t (except t = 0 ) , each state of nature is the sucessor of one unique state of nature.

We have hence the following lemma :

Lemma 23. for all t and t′ , t < t′ , for all state ωt′ there exists a unique state ωt at t such that there is a
successor path between ωt and ωt′ . (Past is perfectly known!).

26
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We can define partial information on this tree structure. The idea is that if one has some information, this
information cannot be forgotten.

Definition 24. Information and Filtration. An information structure Pt at date t is a partition of Ωt. There
is perfect information if Pt is composed by all the singletons

{
ωit
}
. There is no information if Pt = {Ωt}. In the

continuous case it will be more convenient to define information through σ-algebras. Here the corresponding
σ-algebra Ft will be composed by all the sets obtained by complementations of the sets of Pt and the Ø.

We say moreover that (Pt)t=0...T is a filtration if, for all t, all At in Pt, all ωt and ω′t in At the predecessors
of ωt and ω′t belongs to the same set in the partition Pt−1.

On this tree structure we can define a process simply as a mapping that takes values at the different states
of nature.

Definition 25. A process X is a mapping that takes real values (potentially mulidimensional) on the tree.
We note Xt(ωt) the value of the process at date t in the state ωt.

Example 26. In the Cox, Ross Rubinstein Model at each date, the price of a stock can be multiplied either
by u or or by d . St = ε.St−1 with ε = d or u. Here a state of nature at date t is given by a sequence on t
digits ωt = (ε1, ε2, · · · εt) each digit being d or u. There are exactly 2t states of nature at date t.

3.2. Stochastic process on a tree

We can add a probability structure on the tree. There are two differents ways to do so. The first one consists
in defining, for each state ωt the probability transition π(./ωt) defined in Ωt+1 :

Definition 27. For each ωt in Ωt the probability transition π(./ωt) ≥ 0 gives the probability of each state
in Ωt+1 knowing that the realized state at t is ωt.

π(ωt+1/ωt) = 0 if ωt+1 is not a successor of ωt.∑
ωt+1>ωt

π(ωt+1/ωt) = 1

It is then very easy to compute the probability of any state ωt′ at any anterior date in any predecessor state.

Lemma 28. The probability π(ωt′/ωt) where t′ > t and ωt the unique state at t which is predecessor of ωt′ is
:

π(ωt′/ωt) =π(ωt′/ωt′−1)× π(ωt′−1/ωt′−2)× · · · × π(ωt+1/ωt) where ωt′ > ωt′−1 > ωt′−2 > · · · > ωt+1 > ωt is
the unique backward path from ωt′ to ωt.

The “ex ante” (at date 0) probability of a state is hence :

π(ωt) =π(ωt/e0) = π(ωt/ωt−1) × · · · × π(ω1/ω0) where ωt > ωt−1 > · · · > ω1 > ω0 is the unique backward
path from ωt to ω0.
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The other way is to give the probability of the terminal states π(ωT ). Then the probability of any state π(ωt)

is simply the probability of subset of terminal states that are successors of ωt :

π(ωt) =
∑

ωT>ωt

π(ωt)

3.3. No arbitrage condition on a dynamic model

In this paragraph we want to derive the no arbitrage condition. We suppose that there exists K assets.
These assets are defined by their dividend process di(ωt) which gives for each sate ωt at date t the cash flow
the owner earns. We simply define a portfolio strategy as a mapping that gives at each date and state the
quantity of assets owned in the portfolio. These quantity can be negative in the sense that short selling is
allowed. The no arbitrage condition will give a condition on prices.

Definition 29. We note θi(ωt) the quantity of asset i owned if the state is ωt. The price of asset i in the
state ωt is noted pi(ωt) .

To a portfolio strategy is associated a cash flow and a value.

The cash flow is simply composed of dividends and the net product of transactions :

Wθ(ωt) =
∑
i

(θi(ωt−1)di(ωt) + pi(ωt) (θi(ωt−1)− θi(ωt)))

Where ωt−1 is the unique predecessor of ωt .

At date 0 this gives Wθ(ω0) = −
∑
i pi(ω0)θ(ω0), which is simply the opposite of the initial cost of the

portfolio.

The value of the portfolio is :

Vθ(ωt) =
∑
i

pi(ωt)θi(ωt)

We have obviously :

Wθ(ωt) + Vθ(ωt) =
∑
i

θi(ωt−1) [di(ωt) + pi(ωt)]

The no arbitrage condition imposes some restriction on the process of prices p. Indeed we have :

Definition 30. An arbitrage portfolio is a portfolio such that Wθ(ωt) ≥ 0 for all t and ωt with at least one
strict inequality. An arbitrage portfolio makes money without taking any risk.
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We have the following proposition:

Proposition 31. The market is arbitrage free if there exists a set of “pseudo state transition prices”
q(ωt/ωt−1) ≥ 0 such that for all asset i :

pi(ωt) =
∑

ωt+1>ωt

q(ωt+1/ωt) [di(ωt+1) + pi(ωt+1)]

or for any portfolio :

Vθ(ωt) =
∑

ωt+1>ωt

q(ωt+1/ωt) [Wθ(ωt+1) + Vθ(ωt+1)]

This proposition is quite simple to proove. It is sufficient to consider one state ωt and its successors at a
given date t . Then consider portfolios such that only θi(ωt) is not zero. . Apply then the result obtained in
the static model.

The above equation tells us that the price of an asset is equal to a weighted sum of its liquidation value at
the next date. The positive weights are common to all asets.

3.4. Risk neutral probability

Assume now that there is are risk free assets. At each date, a risk free asset gives at next date a constant
cash flow d(ωt+1) = 1, and is replaced by a new risk free asset. In other words, there are T short term risk
free assets of maturity one. The price at date t in the state ωt of this asset (Bond) is hence :

B(t, ωt, 1) =
∑

ωt+1>ωt

q(ωt+1/ωt) =
1

1 + r(ωt)

Where r(ωt) is simply the short term interest rate at date t in the state ωt .

Just then define :

q̂(ωt+1/ωt) = q(ωt+1/ωt) (1 + r(ωt))

This is a transition probability! Since it is positive and the sum on the successors of ωt is one. This gives
hence :

pi(ωt) =
1

1 + r(ωt)

∑
ωt+1>ωt

q̂(ωt+1/ωt) [di(ωt+1) + pi(ωt+1)] =
1

1 + r(ωt)
Eq̂ [di(ωt+1) + pi(ωt+1)/ωt]

The price is simply the present value of the expected liquidation cash flow (computed with the risk neutral
probability).
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Proposition 32. when there exists a risk free asset, the price of any asset is the present value of its expected
liquidation cash-flow, computed with some risk neutral probability. If the market is complete this probability
is unique. If it is incomplete it is not, but gives the same value to all possible portfolios.

Definition 33. Consider Q′(ωt) = 1
1+r(ωt)

× 1
1+r(ωt−1) · · ·

1
1+r(ω0) . Where ωt > ωt−1 · · ·ω0 is the unique

path from ωt to e0 . It is called the discount factor at state ωt. Let p̂i(ωt) = Q′(ωt−1)pi(ωt) and d̂i(ωt) =

Q′(ωt−1)di(ωt) the discounted price and divided of the asset i.

It is easy to compute the price of any asset at any state, function only of future dividends. Indeed we have :

p̂i(ωt) =
∑

ωt+1>ωt

q̂(ωt+1/ωt)
[
d̂i(ωt+1) + p̂i(ωt+1)

]
Define then as previously the probability of state ωt knowing et0 by : q̂(ωt/et0) = q̂(ωt/ωt−1)q̂(ωt−1/ωt−2) · · · q̂(ωt0+1/ωt0)

, with ωt > ωt−1 > ωt−2 · · · > ωt0+1 > ωt0 the unique path from ωt back to ωt0 . We have the following
results :

Proposition 34. The (discounted) price at date t0 of an asset in the state ωt0 is equal to the expected
discounted value of future dividends :

(3.4.1) p̂i(ωt0) =
∑
t

∑
ωt

q̂(ωt/ωt0)d̂i(ωt)

If an asset does not distibute dividends (except at final date T) then its discounted price is a martingale under
the risk neutral probability:

p̂(ωt) =
∑

ωt+1>ωt

q̂(ωt+1/ωt) [p̂(ωt+1)]

3.5. The Cox Ross Rubinstein model.

The idea is to repete the 2 dates model. A state of nature at date t is a t digits sequence of up or down :
ωt = (ε1, ε2..., εt) with εk = up or down .

Assume that St+1 ((ωt, up)) = uSt (ωt) and St+1 ((ωt, down)) = dSt (ωt) where u and d are two positive
numbers with u > d . The (logarithm of the) price of the stock is an additive random walk. At each date
the (log of the) price is incremented or decremented by lnu or ln d .

Assume furthermore that the short term interest rate is constant. Then the transition prices are very simple
whatever the state ωt we have :

q((ωt, up) /ωt) = qu =
1

1 + r

1 + r − d
u− d
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q ((ωt, down) /ωt) = qd =
1

1 + r

u− (1 + r)

u− d
And the risk neutral transition probability does not depend on ωt:

q̂u =
1 + r − d
u− d

q̂d =
u− (1 + r)

u− d
This give a transition probability on the tree. And the allow to compute any discounted expected cash flow
on that tree at any date.

3.6. Reformulation : filtration and tree

Take a tree with T steps. Take the set of “final states of nature” ΩT . At each final state corresponds exactly
one trajectory. Take then a particular trajectory ω ∈ ΩT . We can easily define a process X. The value of X
at date t ≤ T if the state is ω is noted X (t, ω).

We have first defined a tree between dates 0 and T, and then a stochastic process on the tree. We can procede
the other way round :

3.6.1. Trajectories of a process. First, we can begin, by defining all the possible “trajectories” of the
process X. Assume for instance, T = 3 and that there are exactly 4 different trajectories named ωi3:

t = 0 t = 1 t = 2 t = 3

ω1 0 1 2 1

ω2 0 2 3 3

ω3 0 1 1 2

ω4 0 3 2 2

(we have omitted the subscript 3).

We call Ω =
{
ω1, ω2, ω3, ω4

}
the set of all different possibilities. The process is simply a family of applications

ω → Xt (ω).

Now we can build a tree which is associated to the progressive revelation of information on ω.

At t = 0, one observes X = 0, so that we have no information about the “realized” state in Ω. Now at t = 1

we acquire some information if X1 = 1 we know that ω is either ω1 or ω3 , if X1 = 2 then we are sure that
ω = ω2 and if X1 = 3 then ω = ω4. So we have a first partition of Ω :P1 =

{{
ω1, ω3

}
,
{
ω2
}
,
{
ω4
}}

. We
can represent the 3 elements of P1 by drawing the first 3 branches of a tree :
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Then at t = 2, one acquire information since the trajectories ω1 and ω3 are different! We have the partition
P2 =

{{
ω1
}
,
{
ω3
}
,
{
ω2
}
,
{
ω4
}}

, so that the tree becomes :

We can define the σ-algebras associated to partitions. The σ-algebra associated to P1 is the set of subsets
containing the three elements of the partition, their complementary and their unions :

F1 =
{{
ω1, ω3

}
,
{
ω2
}
,
{
ω4
}
,
{
ω2, ω4

}
,
{
ω1, ω2, ω3

}
,
{
ω1, ω2, ω4

}
,
{
ω1, ω2, ω3, ω4

}
,Ø
}

it is the set of all parts of Ω where ω1 and ω3 are locked together (undistinguishable)!

At date 2 , F2 is simply the set of all parts of Ω because, observing X2 allows to distinguish between ω1 and
ω3. At t = 0 we have F0 =

{{
ω1, ω2, ω3, ω4

}
,Ø
}

So the revelation of information gives rise to an increasing sequence : F0 ⊂ F1 ⊂ F2 = F3 = F4 . We say
we have a “filtration” on Ω, that is an increasing sequence of σ-algebras.

3.6.2. Generalization. More generally we can define first a probabilizable space Ω endowed with a
σ-algebra F . Then, a process is simply a family Xt : ω → Xt (ω) ∈ R, t ∈ {0, 1, 2, ..., T}. obviously Xt must
be F measurable, that is that , for any date and for any borellian B of R, X−1

t (B) ∈ F .

A filtration is an increasing sequence of σ-algebras : Ft ⊂ Ft+1 ⊂ F . We say that X is adapted to the
filtration if, for any date and any borellian : X−1

t (B) ∈ Ft

A very “natural filtration” is the one generated by X itself. FX
t is exactly composed of all the X−1

t (B).
(This is what we have done in the previous paragraph).
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3.7. Appendix : the example of a random walk

In a discrete random walk between 0 and T , the set Ω is the set of sequences ω = (ε1, ε2, ..., εT ) where the
“digits” εt can take two values (for instance, a and b, a > b ). There are 2T such sequences. The random
walk itself is a process X such that Xt+1 (ω) = Xt (ω) + εt+1 (ω) where εt+1 (ω) is the (t + 1)th digit of ω,
X0 being given.

One can represent such a random walk on a grid (see figure). A trajectory is a path from t = 0 to t = T on
the grid. To each ω corresponds a unique trajectory.

There are exactly 2T trajectories. But at each date, there are only t+ 1 different values for X. Knowing the
value of X only at date t does not give the whole information on the past trajectory. Several trajectories can
lead to the same value of X.

The last ingredient of the random walk is the probability structure attached to Ω.

Remember that one way is to define transition probabilities on the tree associated to Ω: π (ωt+1/ωt) =

π ((ωt, εt+1) /ωt). For each ωt this gives two numbers (with sum equal to one) π ((ωt, a) /ωt) and π ((ωt, b) /ωt).

Definition 35. We say that the processX has the Markov property if that transition probability π ((ωt, a) /ωt)

(and hence π ((ωt, b) /ωt) = 1−π ((ωt, a) /ωt)) is the same for all the ωt leading to the same value of Xt that
is for all the past trajectories leading to the same value of Xt. The future evolution of the process depends
on the past uniquely through the present value.

On the grid, the Markov property means that on can give “weights” to the two different vertices starting from
each node of the grid (that is for each value of Xt) : πa (Xt) and πb (Xt).

When these transition probabilities are independent of Xt , say πa and πb, one says we have a stationnary
random walk.
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In that case the transition probabilities for the process itself is very simple. The probability that the process
reaches y at date t′ ≥ t if it is equal to x at date t depends only on y− x and t′− t. Moreover y− x can take
only t′ − t+ 1 values : ka+ (t′ − t− k) b , k = 0, 1, ..., t′ − t.

Pr (Xt′ = x+ ka+ (t′ − t− k) b/Xt = x) =

(
n

k

)
πkuπ

t′−t−k
d

For instance, for t′ − t = 4 , a = −b and πa = πb = 1
2 , the 5 probabilities are 1

16 ,
4
16 ,

6
16 ,

4
16 ,

1
16

This give an histogram centrerd on X0 =0, for a = −b = 1:
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Now we can make another remark.

Consider the probability transition Pr (Xt′ = y/Xt = x). And an intermediate date t1 (t < t1 < t′) . We
have :

Pr (Xt′ = y/Xt = x) =
∑
z

Pr (Xt1 = z/Xt = x) Pr (Xt′ = y/Xt1 = z)

That we can write :

Pr (Xt′ = y/Xt = x) = E [Pr (Xt′ = y/Xt1) /Xt = x]

Define now, t′ and y being fixed the process, Yt = Pr (Xt′ = y/Xt)

The previous equation shows that Y is a martingale since this equation implies Yt = E [Yt1/Yt]

3.8. Asymptotic random walk

The idea is to take a fixed interval [0, T ], subdivision t0 = 0, t1, ...tk, ..., tn = T of [0, T ] with tk = k Tn , and
make n tend to infinity.

For n given, a stationnary random walk is defined as previously :

Wn
tk+1

= Wn
tk

+ εn



3.8. ASYMPTOTIC RANDOM WALK 36

with εn = an or bn

Take a symmetric random walk an = −bn = sn, and πa = πb = 1
2

As all the increment are independent, the variance of XT is equal to the sum of the variances of each step :

varWn
T =

n∑
k=1

varεk = ns2
n

If we want that varWT be finite it is necessary that sn ∼ 1√
n
.

Taking sn =
√

T
n allows to something interesting : the variance of the process at T is equal to the time

elapsed.

Remark 36. In order to get a random walk with variance equal to T , each step must be such that sn =
√

T
n ,

that we can write with an enormous abuse of notation (dW )
2

= dt

When we make n tend to infinity, a trajectory becomes a “fractal” object which is continuous but nowhere

differentiable. The length of a trajectory is n
√(

T
n

)2
+ T

n that tends to infinity.

One can show that the “limit” process is exactly a standard Brownian motion. One can see this by applying
the Central Limit Theorem and show that WT is gaussian.



CHAPTER 4

Continuous models

4.1. The “continuous random walk” : Brownian motion

We want to replace the random walk, of chapter 3 by some time-continuous process. The idea is very simple.
between to “consecutive” dates t and t + dt instead of having a finite set of possibilities, we will have an
“infinite” non countable set of “states”. We would like to define a random continuous variable “drawn” at each
date in each previous state. There is a way to do that : brownian motions.

4.1.1. Brownian motion. We want to define the underlying probabilizable space (Ω,F ). As in the
discrete case, we would like to define ω in Ω as a “trajectory” between 0 and T of some process (the Brownian
Motion)W . W (t, ω) is the value ofW at datet if the trajectory is ω. We will noteW (t) the random variable
ω −→W (t, ω). The process is defined as follows

Definition 37. A standard Brownian Motion (SBM) is a process W (t, ω) such that :

1. W (0, ω) = 0 with probability 1

2. t→W (t, ω) is continuous for all ω

3. for all subdivision t0 = 0, t1, ..., tk, tn = T, W (tk+1)−W (tk) and W (th+1)−W (th) are independent

4. W (tk+1)−W (tk) is a normal variable with zero mean and variance equal to tk+1 − tk.

This definition is consistent because, and it is very important, normal distribution is stable : if two variables
are normal, then any linear combination is normal. So the definition above does not depend on the way you
subdivise the interval.

A brownian motion is a generalization of a random walk : at each “step” W “moves” randomly (increases or
decreases) according to a Gaussian law.

Let us examine the main properties of a SBM.

37
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4.1.1.1. Quadratic variations. LetW (t) a SBM :W (t′)−W (t) is a normal variable centered with variance
t′ − t.

Let a subdivision ti.

We want to study :

∆k = (W (tk+1)−W (tk))2 − (tk+1 − tk)

We have :

∑
∆k =

∑
(W (tk+1)−W (tk))2 − T

Let us examine the moments of ∆k.

First, the mean is zero since W (tk+1)−W (tk) is precisely a normal variable with variance (tk+1 − tk) ,

E [∆k] = E
[
(W (tk+1)−W (tk)) 2

]
− (tk+1 − tk)

= var [W (tk+1)−W (tk)]− (tk+1 − tk) = 0

What is its variance (remember that the fourth moment of a normal is 3σ4) :

var(∆k) = E((W (tk+1)−W (tk))4 − 2(tk+1 − tk)(W (tk+1)−W (tk))2 + (tk+1 − tk)2)

= 3 (var [W (tk+1)−W (tk)])
2 − 2(tk+1 − tk)var [W (tk+1)−W (tk)] + (tk+1 − tk)2

= 2(tk+1 − tk)2

Take for example tk+1 − tk = 1/n,

Then we have :

lim var(
∑

∆k) = 0

The variance of the quadratic variation is zero! That means that
∑

(W (tk+1)−W (tk))2 is not very far from
being “very often” T .

In fact one can show that :
∑

(W (tk+1)−W (tk))2 is asymptotically almost surely equal to T .

That allows to note :
[dW (t)]

2
= dt



4.1. THE “CONTINUOUS RANDOM WALK” : BROWNIAN MOTION 39

This is obviuously an abuse of notation, but very useful...

4.1.2. Filtration. As in the discrete case one can define the filtrationFt on Ω induced by a SBM. But
this is a very complicated object. The idea is the following.

For eacht, W (t) is Ft-measurable, for each t and for future subdivision t < t1 < t2 < ... < tn, the Brownian
motion increments W (t1)−W (t),W (t2)−W (t1), ...,W (tn)−W (tn−1) are independent of Ft.

Here is one way to construct Ft. First fix t. Let s ∈ [0, t] and C ∈ B(R) a borellian be given. Put the set
{W (s) ∈ C} = {ω,W (s, ω) ∈ C} in Ft. Do this for all possible numbers s ∈ [0; t] and C ∈ B(R) . Then put
in every other set required by the -algebra properties. This Ft contains exactly the information learned by
observing the Brownian motion up to time t.

In the sequel, the underlying probability structure is the one of a given SBM with the associated filtration.

4.1.3. Stochastic integral.

4.1.3.1. The simple case of a real function. Let f(t) a real function of t. Just define :
n−1∑

0

f(tk) (W (tk+1)−W (tk))

This is a normal variable whose mean is zero and whose variance is :

n−1∑
0

(f(tk))
2

(tk+1 − tk)

What is the limit of the above sum? Obviously
´ T

0
(f(t))

2
dt

That alllows us to define the stochastic integral of f :

ˆ T

0

f(t)dW (t)

This is a normal variable whose mean is zero and variance
´ T

0
(f(t))

2
dt.

4.1.3.2. Stochastic integral of a process f . Ther intuition is the following : f (t) and W (t) must be
measurable on the same filtration, or put differently f is adapted to the filtration of W .

In that case one can define the stochastic integral

ˆ T

0

f(t)dW (t)

• Stochastic differential
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Instead of X(T ) =
´ T

0
f(t)dW (t) one may writes :

dX(t) = f(t)dW (t)

This extends the notion of differential, but the right writing would be under the integral form.

4.1.4. Stochastic differential equation. We can define process as solutions of a :

Definition 38. Stochastic Differential Equation :

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t)

This means that the random process X must be such that :

X(t) = X(0) +

ˆ t

0

µ(X(s), s)ds+

ˆ t

0

σ(X(s), s)dB(s)

The second integral being a “stochastic integral”.
The solution of such a “stochastic differentiel equation” is called a diffusion process.

A good example is the geometric brownian motion :

dX(t) = µX(t)dt+ σX(t)dW (t)

4.1.5. Martingale. In this context what is a martingale? Remember that in the discrete finite model,
a random process is a martingale if the value at time t is equal to the mean of the values at the successors.

Here the definition is :

Definition 39. X (adapted to the filtration) is a martingale if ∀t,∀t′, t ≤ t′, X (t) = E [X (t′) /Ft]

Knowing W up to t, the value of X at t is the expected value of X at any posterior date.

Here it can be shown that :

Proposition 40. X(t) is a martingale if there exists a process γ(t) adapted such that dX(t) = γ(t)dW (t).

4.1.6. Ito lemma. Let f a function of a real variable. We would like to study the process f(W (t))

where B is a SBM. Or more generally f(X(t)) where X(t) is a diffusion process.

Just write :

f(W (tk+1))−f(W (tk)) = f ′(W (tk)) (W (tk+1)−W (tk))+
1

2
f ′′(W (tk)) (W (tk+1)−W (tk))

2
+R ((W (tk+1)−W (tk)))
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take the sum :
f(W (t))− f(W (0)) =

∑
f(W (tk+1))− f(W (tk))

The first and the second term give (at the limit) :

ˆ T

0

f(W (t))dW (t) +
1

2

ˆ T

0

f ′′(W (t))dt

one can show that the last term is almost surely 0 at the limit.

We can hence write (simple Ito lemma):

df(W (t)) = f ′((W (t))dW (t) +
1

2
f ′′(W (t))dt

This formula is very easy to understand. Think of a particle moving on the real line according to the Brownian
motion. Take for example f(x) = x2 , f(W (t)) is simply the square of the “distance” traveled by the particle.
Obviously this distance is not zero on average. At each step the particle moves away by a distance equally
distributed around a positive value equal to the time spent : dX2 = dt+ 2W (t)dW (t).

More generally if we have a diffusion process :

dX(t) = µ(t,X (t))dt+ σ(t,X (t))dW (t)

And a real function f(t, x).If we set Y (t) = f(t,X(t)). We can write :

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t)) {µ(t,X (t))dt+ σ(t,X (t))dW (t)}+

1

2

∂2f

∂x2
(t,X(t)) (σ(t,X (t)))

2
dt

Or :

Lemma 41. (Ito Lemma) Let X(t) a diffusion process such that dX(t) = µ(t)dt + σ(t)dW (t). Let Y (t) =

f(X(t), t) , where f is a C2 real function. Then Y is a diffusion process and :

dY (t) =

{
∂f

∂t
(t,X (t)) +

∂f

∂x
(t,X (t))µ(t,X (t)) +

1

2

∂2f

∂x2
(t,X (t)) (σ(t,X (t)))

2

}
dt

+
∂f

∂x
(t,X (t))σ(t,X (t))dW (t)

We define the Dynkin operator by

Df(t, x)) =
∂f

∂t
(t, x) +

∂f

∂x
(t, x)µ(t, x) +

1

2

∂2f

∂x2
(t, x) (σ(t, x))

2

This is simply the mean of the variation of the process Y (t) = f (t,X (t)).
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4.1.7. Brownian motion with drift and scaling. A Brownian motion with drift and scaling is the
simple diffusion X solution of :

dX(t) = µdt+ σdW (t)

Where µ is a constant “drift” and σ a constant scaling (variance) factor.

Obviously :

X (t) = X (0) + µt+ σW (t)

We can also write :
dX(t) = σ

(µ
σ
dt+ dW (t)

)
= σdW̃ (t)

W̃ = µ
σ t+W (t) is a drifted modification of W with a drift equal to θ = µ

σ

4.1.8. Geometric BM. Just look at a geometric brownian motion, diffusion solution of :

dX(t) = µX(t)dt+ σX(t)dW (t)

Take Y (t) = ln (X(t)) . By Ito formula we get :

dY (t) =

(
µ− 1

2
σ2

)
dt+ σdW (t)

That is :
X(t) = X(0) exp

[(
µ− 1

2
σ2

)
t+ σW (t)

]
4.1.9. Transition probabilities. It is interesting to write the transition probabilities. For a SBM the

probability density of W (t′), knowing that W (t) = x is :

f(t, t′, x, y) =
1√

2π (t′ − t)
exp

(
− (y − x)

2

2 (t′ − t)

)
This is the density of probability to go from x at t to y at t′ . In some sense the probability of all the
trajectories from x to y. Take then an intermediate date t1 . By definition of the SBM we have:

f(t, t′, x, y) =

ˆ +∞

−∞
f(t, t1, x, z)f(t1, t

′, z, y)dz

Now fix t′and y and define
φ(t) = f (t, t′,W (t), y)
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Rewrite the previous equation :

φ (t) =

ˆ +∞

−∞
f(t, t1,W (t) , z)f(t1, t

′, z, y)dz

That is :
φ (t) = E (φ (t1) /W (t)) = E (φ (t1) /φ (t))

P (t) is a martingale.

By Ito lemma

dφ (t) =

[
∂f

∂t
(t, t′,W (t), y) +

1

2

∂2f

∂x2
(t, t′,W (t), y)

]
dt+

∂f

∂x
(t, t′,W (t), y) dW (t)

We check that the Dynkin term is 0 :
∂f

∂t
+

1

2

∂2f

∂x2
= 0

Indeed :

∂f

∂t
=

1
√

2π (t′ − t)3/2

[
1− (y − x)

2

2 (t′ − t)

]
exp

(
− (y − x)

2

2 (t′ − t)

)

and

∂f

∂x
=

y − x
√

2π (t′ − t)3/2
exp

(
− (y − x)

2

2 (t′ − t)

)

and

∂2f

∂x2
=

[
−1

√
2π (t′ − t)3/2

+
(y − x)

2

√
2π (t′ − t)5/2

]
exp

(
− (y − x)

2

2 (t′ − t)

)

This equation is a kind of heat equation :

Remark 42. If f(t, t′, x, y) is the transition probability of the SBM, we have

∂f

∂t
+

1

2

∂2f

∂x2
= 0
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4.1.10. Probability change : Girsanov Theorem (light). Take W̃ = θt+W a standard Brownian
with drift. The “trajectories” of W̃ are qualitatively the same as those of W . But their probabilities are not
the same. To be more precise let us compute the transition probability of W̃ :

fθ (0, t, 0, y) =
1√

2π (t′ − t)
exp

(
− (y − θt)2

2 (t′ − t)

)
That can be rearranged in the following way :

fθ (0, t, 0, y) =
1√
2πt

exp

(
−y

2

2t

)
exp

(
2θyt− θ2t2

2t

)

fθ (0, t, 0, y) =
1√
2πt

exp

(
−y

2

2t

)
exp

(
−1

2
θ2t+ θy

)
So :

f (0, t, 0, y) = fθ (0, t, 0, y) exp

(
1

2
θ2t− θy

)
Roughly speaking, if you take a trajectory between 0 and t of W̃ , if you multiply its weight by exp

(
1
2θ

2t− θW̃ (t)
)

=

exp
(
− θ

2

2 t− θW (t)
)
, the new weight of this trajectory is the one of the SBM.

More precisely, let define Z by :

Z (t) = exp

(
−1

2
θ2t− θW (t)

)
One can show that Z is a martingale, indeed (Ito):

dZ (t) = Z (t)

(
−1

2
θ2dt− θdB (t)

)
+

1

2
Z (t) θ2dt

That is :

dZ (t) = −θZ (t) dB (t)

That implies in particular :
E (Z (t)) = Z (0) = 1

Take now an horizon T .

Let now define a new probability by :
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P̃r (A) =

ˆ
A

Z (T ) dPr (ω) = EPr [IAZ(T )]

If A ∈ Ft for t ≤ T , we have, by definition of conditional expectation and because Z is a martingale :

P̃r (A) = EPr [IAZ(T )] = EPr [IAEPr [Z(T )/Ft]] = EPr [Z (t) IA]

Under this new probability measure, W̃ is a SBM. Indeed, let us compute the new probability density of
W̃ (t) , for instance take A =

{
W̃ (t) ∈ [a, b]

}
= {W (t) ∈ [a− θt, b− θt]}:

P̃r (A) =

ˆ b−θt

a−θt
exp

(
−1

2
θ2t− θy

)
1√
2πt

exp

(
−y

2

2t

)
dy =

ˆ b−θt

a−θt

1√
2πt

exp

(
− (y + θt)

2

2t

)
dy =

ˆ b

a

1√
2πt

exp

(
−y

2

2t

)
dy

4.1.11. First time passage. Let a SBMW and define the “maximum process” asM (t) = max (W (s) , s ≤ t)

Take m > 0 and let
τ = inf (t,W (t) > m)

We have obviously :

Pr [τ < t] = Pr [M(t) > m]

Take a trajectory of W such that M (t) > m and W (t) < b with b < m. At the first time τ (necessarily < t)
where W (τ) = m, take the symmetrical (shadow) trajectory.

This new trajectory has the same “probability” as the original one. This new trajectory is such that W (t) >

2m− b. Reciprocally to any trajectory such that W (t) > 2m− b , corresponds a unique trajectory such that
M (t) > m and W (t) < b.
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So :

Pr [W (t) < b,M (t) > m] = Pr [W (t) > 2m− b]

We have :

Pr [M(t) > m] =

ˆ m

−∞

∂

∂b

ˆ +∞

2m−b

1√
2πt

exp

[
−x

2

2t

]
dx

We have also :

Pr [M(t) > m] = Pr [W (t) < m,M(t) > m] + Pr [W (t) > m] = 2 Pr [W (t) > m]

Pr [M(t) > m] = Pr [τ < t] = 2

ˆ +∞

m

1√
2πt

exp

[
−x

2

2t

]
dx

Change variable z = x√
t
:

Pr [M(t) > m] = Pr [τ < t] = 2

ˆ +∞

m√
t

1√
2π

exp

[
−z

2

2

]
dz

the density fτ (t) = ∂
∂t Pr [τ < t] is then :

fτ (t) =
m√

2πt3/2
exp

[
−m

2

2t

]
Which is a Levy law.



4.2. ARBITRAGE FREE CONDITION 47

4.2. Arbitrage free condition

As in the discrete case, one can show that the no arbitrage condition amounts to the existence of a risk
neutral probability structure. We must find a probability structure on “the tree” such that the price of an
asset is in this case equal to the discounted expected value of the future cash flows. But first consider the
deterministic case.

4.2.1. Preamble Arbitrage free hypthesis in a deterministic continuous model : zero coupons
bonds. Recall that a zero coupon bond has only a terminal payment at the termination date T . Its price
at date t (prior to T ) is noted B (t, T ) (with B (T, T )) = 1).

How can we express that, given all theses prices at all dates, the market is arbirage free?

Intuitively the no arbitrage condition means that the yields between t and t+h, per unit of time , B(t+h,T )−B(t,T )
B(t,T )h

does not depend on T . Indeed if it were not the case ons could make money by selling and buying two zero
coupons with different maturities. The limit when h goes to zero is called the short term interest rate r(t).

Proposition 43. If the market is arbitrage free , then there exists a deterministic short term interest rate
r(t) such that :

∀t ≤ T ∂B

∂t
(t, T ) = r(t)B(t, T )

That is , using B (T, T ) = 1:

B(t, T ) = exp

[
−
ˆ T

t

r(s)ds

]

If one knows the dynamics of short term rate r(t), then one knows all the zero coupon prices.

4.2.1.1. The yield curve. On can rewrite the price of the z-c bond introducing its yield as a function of
maturity :

B(t, T ) = exp

[
−
ˆ T

t

r(s)ds

]
= exp [−R(t, T )(T − t)]

That is :

R(t, T ) =

´ T
t
r(s)ds

T − t

Writing it as a function of maturity τ :
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R̂(t, τ) =

´ t+τ
t

r(s)ds

τ

Definition 44. τ → R̂(t, τ) is the “yield curve” at date t : the yield per unit of time as a function of maturity.

4.2.1.2. Pricing of more complicated assets. Assume that all the ZC exists and consider one asset A that
gives a continuous cash flow d(t) per unit of time.

Obviously, the price of such an asset must be :

y(t0) = y(t)B (t0, t) +

ˆ t

t0

d(s)B (t0, s) ds

It is quite easy to find this result another way:

With one euro at date t one has two possible strategies : buy the asset, earn the cash flow and resell it
at date t + dt. or buy a zero coupon and get 1 + r(t)dt per euro. Let y(t) the value of asset A at date t.
Arbitrage-free hypothesis implies :

•
y + d = ry

It is quite easy to solve this differential equation :

y(t) = exp

(ˆ t

t0

r(s)ds

)[
y(t0)−

ˆ t

t0

d(s) exp

(
−
ˆ s

t0

r(u)du

)
ds

]
4.2.1.3. Examples. The above formula has two components : the first one takes into account the resell

value at date t. The second is the present value of the cash flow.

Consider then the following particular cases :

(1) Finite bond. Imagine there is a time T such that d(t) = 0 for t ≥ T . This implies y(T ) = 0, so that:

y(t0) =

ˆ T

t0

d(s) exp

(
−
ˆ s

t0

r(u)du

)
ds

that is the discounted value of cash flow: the fundamental
(2) Infinite living asset with no dividend: pure bubble :

y(t) = y(0) exp

(ˆ t

0

r(s)ds

)
here the value grows at a rate equal to r
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(3) General case : fondamental and bubble part. Let f (t) =
´∞
t
d(s) exp

(
−
´ s
t
r(u)du

)
ds , the “fonda-

mental value” of the asset, we have :
•
f = d+ rf , so that

y − f = r (y − f)

y − f is a pure bubble

These examples shows that arbitrage free condition does not prevent bubbles (permanent bubbles) growing
at the rate r.

4.2.1.4. (kind of) derivatives. Imagine now there is a “state variable” governed by the following equation
:

•
X(t) = f(t,X(t))

Let s→ X̂ (t, x, s) the trajectory, that is the value of X at date s when the value at t is x. To be simple we
write, when there is no ambiguity :

x(s) = X̂(t, x, s)

We have an asset (kind of) “derivative” whose cash flow d(t, x) depends on the value of the state variable,
and that terminates at T giving h(x) en T .

One assumes that one can define the instantaneous rate of return r(t, x) : all the zero coupons exist.

Let V (t, x) the value of the asset , v(s) = V (s,X(t, x, s))

Hence :

•
v(s) =

∂V

∂t
+
∂V

∂x
f(s, x(s))

Or :
•
v(s) + d(s, x(s)) = r(s, x(s))v(s)

So :

V (t, x) = v(t) = h(x(T )) exp

(
−
ˆ T

t

r(s, x(s))ds

)

+

ˆ T

t

d(s, x(s)) exp

(
−
ˆ s

t

r(u, x(u))du

)
ds

4.2.2. The stochastic case.
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4.2.2.1. Diffusion with linear drift. First of all, it is useful to study linear drift diffusions, solutions of :

dY (t) = (a(t)Y (t)− b(t)) dt+ σ(t)dW (t)

Where a b and σ are adapted to the filtration of W .

The solution of
dY (t) = (a(t)Y (t)− b(t)) dt+ σ(t)dW (t)

is such that :

Y (t0) = E
[
Y (t) exp

[
−
ˆ t

t0

a(u)du

]
+

ˆ t

t0

(
b(s) exp

[
−
ˆ s

t0

a(u)du

])
ds/Ft0

]

Proof. take

X0(t) = −
ˆ t

t0

(
b(s) exp

[ˆ t

s

a(u)du

])
ds

we have
dX0 = (−b+ aX0) dt

Set

Y (t) = Z(t) exp

[ˆ t

t0

a(s)ds

]
+X0(t)

Then

(aY − b) dt+ σdW = dZ exp

[ˆ t

t0

a(s)ds

]
+ aZ exp

[ˆ t

t0

a(s)ds

]
dt+ (aX0 − b)dt

Thatt is :

σdW = dZ exp

[ˆ t

t0

a(s)ds

]
And hence :

Z(t) = Z(t0) +

ˆ t

t0

σ (s) exp

(
−
ˆ s

t0

a(u)du

)
dW (s)

So :

Y = Y (t0) exp

[ˆ t

t0

a(u)du

]
−
ˆ t

t0

(
b(s) exp

[ˆ t

s

a(u)du

])
ds+

ˆ t

t0

σ (s) exp

(ˆ t

s

a(u)du

)
dW (s)

�

4.2.2.2. Arbitrage free condition. We are going to give here a very general result concerning arbitrage
free condition. We assume that randomness is described by an underlying diffusion process that we take as
a “state variable”.

dX (t) = µ(t,X (t))dt+ σ(t,X (t))dW (t)
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• Assets

Assume there are K + 1 assets labeled 0,1,2.., K.

The price pi of asset i depends on t and on the value at that date taken by the state variable :

pi(t) = Pi(t,X(t))

Each asset gives a cash flow bi(t,X(t))

Asset number 0 is locally risk free asset :

dp0

dt
= r(t,X(t))p0(t)

• Portfolios

Let ∆ = (∆1,∆2, ...,∆k) a portfolio : ∆i is the quantity of asset i in the portfolio.

• Arbitrage free principle :if a portfolio is risk free, it must have the same return as the risk free asset
:

Consider the value of a portfolio at date t when X (t) = x :

P4(t, x) =
∑

∆iPi(t, x)

So that noting D the Dynkin operator, the value added is :

{∑
∆iDPi(t, x) + bi(t, x)

}
dt+

{∑
∆i
∂Pi
∂x

(t, x)σ (t, x)

}
dW (t)

or put differently

dp4+ < 4.b >=< 4.DP + b > dt+ < 4.∂P
∂x

> dW

∆ is risk free if the coefficient of dW is 0 :

< 4.∂P
∂x

>= 0

In that case we have

∀∆ < ∆.
∂P

∂x
>= 0⇒< ∆.DP + b >= r < ∆, P >
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∀∆, < ∆.
∂P

∂x
>= 0⇒< ∆. (DP + b− rP ) >= 0

the two hyperplanes of RK ,
(
∂P
∂x

)⊥
and (DP + b− rP )

⊥ are identical so that there exists λ(t, x) such that
for all i >0:

DPi(t, x) + bi(t, x)− r(t, x)Pi(t, x) = λ(t, x)
∂Pi
∂x

(t, x)

The market is arbitrage free if there exists a function λ(t, x) such that for any asset i we have : (D is the
Dynkin) :

DPi (t, x) + bi (t, x)− r (t, x)Pi (t, x) = λ (t, x)
∂Pi
∂x

(t, x)

This equation will be very powerful in some particular cases.

4.3. the Black and Scholes model.

4.3.1. Risk neutral dynamics. The state variable is the price of one of the assets X = S = P1

distributing no dividend b1 = 0 :

dS (t) = µ (t, S (t)) dt+ σ (t, S (t)) dW (t)

We have : DP1(t, s) = µ(t, s) and ∂P1

∂S = 1.

So that the arbitrage free condition gives :

µ (t, S)− r(t, S)S = λ (t, S)

And then we have for every other asset :

DPi(t, S) + bi(t, S)− r(t, S)Pi(t, S) = (µ(t, S)− r(t, S)S)
∂Pi
∂S

(t, S)

That is :

∂Pi
∂t

(t, S) +
∂Pi
∂S

(t, S)r(t, S)S +
1

2

∂2Pi
∂S2

(t, S)σ(t, S)2 = r(t, S)Pi(t, S)− bi(t, S)

That one can write :

D̂Pi(t, S) = r(t, S)Pi(t, S)− bi(t, S)

Where D̂ is the Dynkin associated to the process :
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dS (t) = r(t, S)Sdt+ σ(t, S)dB

Which is the Risk Neutral dynamics!

Proposition 45. The probability structure associated to the process :

dS (t) = r(t, S)Sdt+ σ(t, S)dB

Is such that the price of both assets is equal to the discounted value of their cash flow (here the resell value).
This is the RN dynamics.
Any asset has a value Pi (t, S) such that :

D̂Pi(t, S) = r(t, S)Pi(t, S)− bi(t, S)

4.3.2. The geometric brownian case. We can solve the equation in a particular case :

dS = µSdt+ σSdB

where r and σ are constant.

The risk neutral dynamics is :

dS = rSdt+ σSdB

That is :

S(T ) = exp

[
ln (S (t)) +

(
r − 1

2
σ2

)
(T − t) + σ (B(T )−B(t))

]
The arbitrage free EDP is hence :

DP = rP − b

We need to completely solve this equation a final value at T . Assume for instance that P (T, x) = h (x) where
h is given.

The price of an asset distributing b (t, S) and with the terminal value h (S) is :

P (t, S) = E

[ˆ T

t

exp (−r (u− t)) b (s, S (u)) du+ exp(−r (T − t))h(S(T ))/S(t) = S

]

Take for instance a call for which the terminal value is : h(S(T )) = (S(T )−K)
+. The formula gives :



4.3. THE BLACK AND SCHOLES MODEL. 54

C(t, S) = exp(−r (T − t))E
[
(S(T )−K)

+
/S(t) = S

]
It is relatively easy to compute this value.

Lemma 46. Let I = E
[
(exp(u)−K)

+
]
where u is N

(
m, s2

)
, then :‘

I = eµ+ s2

2 N

(
s+

µ− ln(K)

s

)
−KN

(
µ− ln(K)

s

)
Where N is the cumulative distribution function of a standard normal.

Proof. We have

I =
1√
2πs

+∞ˆ

ln(K)

(eu −K) e−
(u−µ)2

2s2 du

take v = u−µ
s :

I =
1√
2π

+∞ˆ
ln(K)−µ

s

(
e

2st+2µ−v2
2 −Ke− v

2

2

)
dv

I =
1√
2π

+∞ˆ
ln(K)−µ

s

(
e−

(v−s)2−2µ−s2
2 −Ke− v

2

2

)
dv

I =
1√
2π
eµ+ s2

2

+∞ˆ
ln(K)−µ

s

e−
(v−s)2

2 dv − 1√
2π

+∞ˆ
ln(K)−µ

s

Ke−
vt2

2 dv

I = eµ+ s2

2 N

(
s− ln(K)− µ

s

)
−KN

(
µ− ln(K)

s

)
�

We have then the Black and Scholes formula by taking :

µ = ln (S) +

(
r − 1

2
σ2

)
(T − t)

s = σ
√
T − t

in the expression :
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C(t, S) = exp(−r (T − t))E
[
(S(T )−K)

+
/S(t) = S

]

4.4. Appendix : conditional expectation

Our starting point is a random experiment modeled by a probability space (Ω,F ,Pr) , so that Ω is the
sample space, F is the σ -algebra of events, and Pr is the probability measure on (Ω,F ) . To study the
conditional expected value of a real-value random variable X, the more general approach is to condition on
a sub σ-algebra G of F .

Before we get to the definition, we will assume that any expected values that we mention exist. That is, if
we write E(X) then we are assuming that X is a real-valued random variable and that E(|X|) <∞.

suppose that X is a random variable and that is a sub σ-algebra of F . The conditional expected value of
X given G is the random variable E(X/G ) defined by the following properties:

• E(X/G ) is measurable with respect to G .
• If A ∈ G then E(IAX) = E [IAE(X/G )]

The basic idea is that E(X/G ) is the expected value of X given the information in the σ -algebra G .

One can define the random variable “conditional probability” (which is not a measure) as : Pr(A/G ) =

E(IA/G )

Main property : the next result is the main one: E(X/G ) is closer toX in the mean square sense than any
other random variable that is measurable with respect to G . Thus, if G represents the information that we
have, then E(X/G ) is the best we can do in estimating X.

To make these results more concrete just look at the finite case wher Ω is composed of a dice drawing
Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω is the set of parts of Ω and X defined by X (ω) = ω.

We have :

E [X] =
1

6
[1 + 2 + 3 + 4 + 5 + 6] = 3, 5

Now assume that the sub σ-algebra G is the one associated to the partition {{1, 3, 5}, {2, 4, 6}}. This σ-algebra
has only 4 elements and corresponds to the information on the parity of the dice : odd or even. E [X/G ]

must be Gmeasurable : it must take only two values, one for ω in {1, 3, 5} and another for ω in 2, 4, 6} .
The second condition tells us that if A ∈ G then E(IAX) = E [IAE(X/G )] . One obtains that E(X/G ) is a
random variable such that for ω ∈ {1, 3, 5} : 1+3+5

6 = 3
6E(X/G ) (ω), i.e E(X/G ) (ω) = 3, and for ω ∈ {2, 4, 6}

: 2+4+6
6 = 3

6E(X/G ) (ω), i.e E(X/G ) (ω) = 4. One replaces X by its average in each subset of the σ-algebra.
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CHAPTER 5

Microstructure and behaviour models

We depart here from the hypothesis of “always rational agents” and perfect markets.

5.1. The market efficiency hypothesis

The concept of efficiency for financial market corresponds to the idea that the current prices of financial assets
perfecly reflect all the information available to investors. In other words, financial markets are efficient when
an informed trader cannot make systematically more money than other who only observe current prices.

There are three different degrees of market efficiency. To explain this, take the example of one asset (dis-
tributing no dividends) whose price is pt at date t. At date t the price pt+1 is “random”.

The weakest notion of market efficiency says that price is a a “martingale” for some probability distribution :

pt = E (pt+1/pt)

The semi-strong efficiency says that the price at date t reflects all public information of date t:

pt = E (pt+1/It)

The strong efficiency assumption says that the price reflects all public and private information : the equilib-
rium process makes public all private information.

To precise these concepts we are going to study one very simple model proposed by Grosman and Stiglitz.

5.2. The Competitive REE

There is a single, risky asset with random liquidation value θ̃ and riskless asset (with unitary return). These
are traded by risk averse agents and “noise traders.” The utility derived by a trader i for the (random)
profit πi = (θ̃ − p)xi of buying xi units of the asset at price p is of the CARA type: U(πi) = − exp −ρiπi,
whereρi > 0 is the CARA coefficient that measures risk aversion. We call risk tolerance the inverse of risk
aversion ti = 1

ρi
. Initial wealth of each trader i is normalized to 0 (wlog). Trader i is endowed with a piece of

private information about θ̃. Noise traders are assumed to trade for liquidity reasons submitting a random
trade ũ.

57
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Suppose that a fraction of traders μ ∈ [0, 1] receives a private signal s̃ about θ̃ , we call them Informed,
subscript I, while the complementary fraction does not, Uniniformed, subscript U . Both classes of traders
condition their orders on the price p. Let ρi = ρI > 0 for Informed and ρi = ρU ≥ 0, for Uninformed. s̃, ε̃, ũ
are (pairwise independent) normally distributed:

s̃ N(θ, σ2
s)

θ̃ = s̃+ ε̃ , ε̃ N(0,σv2
ε
)

ũ N(0,σv2u)

We call “precision” the inverse of the variance for j = s, ε or u :

τj =
1

σ2
j

If the price is p , what is the demand of a trader?

The quatity demanded maximizes the expected utility, the expectation being conditionnal to the information
J detained :

Xi(p/J) = arg max
(
E
[
Ui

((
θ̃ − p

)
xi

)
/J
])

But we know that θ̃ is normally distributed so that :

E
[
Ui

((
θ̃ − p

)
xi

)
/J
]

= Ui

(
E
[(
θ̃ − p

)
xi/J

]
− 1

2
ρivar

((
θ̃ − p

)
xi/J

))
So that i’s maximization amounts to :

max

{
E
[(
θ̃ − p

)
xi/J

]
− 1

2
ρivar

((
θ̃ − p

)
xi/J

)}
which gives :

Xi(p/J ) =
E
[
θ̃/J

]
− p

ρivar
(
θ̃/J

)
This expression is quite intuitive : the demand is proportionnal to the spread between expected value and
price. The coefficient of proportionality is large when risk aversion is low and/or risk (measured through
variance) is low.

Before computing the equilibrium we must recall some simple formulas when random variables are normal.
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Let x̃,ỹ a gaussian vector (i.e the variables are such that every linear combination is gaussian).

we have :

Lemma. x̃,ỹ a gaussian vector, we have :

E (x̃/ỹ)− E (x̃) =
cov (x̃, ỹ)

var (ỹ)
[ỹ − E (ỹ)]

var (x̃/ỹ) = var (x̃− E (x̃/ỹ)) = var (x̃)− (cov (x̃, ỹ))
2

var (ỹ)
=

(
1− (cov (x̃, ỹ))

2

var (x̃) var (ỹ)

)
var (x̃)

5.2.1. Naïve equilibrium. Now, consider a first “naive” equilibrium. Each trader optimize with his
information. Uninformed has no information (noted J 0

U ) so that E
[
θ̃/J 0

U

]
= s and var

(
θ̃/J 0

U

)
= σ2

s + σ2
ε :

XU (p/J 0
U ) =

θ − p
ρU (σ2

s + σ2
ε)

= tUτθ
(
θ − p

)
(with 1

τθ
== 1

τs
+ 1

τε
)

Informed observe s̃ so that E
[
θ̃/J 0

I

]
= s and var

(
θ̃/J 0

I

)
= σ2

ε .

So :

XI(p/J 0
I ) =

s− p
ρIσ2

ε

= tIτε (s− p)

The supply by noise trader is u. So that market clearing gives :

(1− µ)tUτθ
(
θ − p

)
+ µtIτε (s− p) = u

Which gives the price :

p =
(1− µ)tUτθθ + µtIτεs− u

(1− µ)tUτθ + µtIτε

The first remark that can be done is that when σε = 0, that is when the Informed traders are “perfectly”
informed, then their demand curve is horizontal p = s. The only possible equilibrium is hence p = s perfectly
revealing their info.

In the general case, remark that the equilibrium price depends (linearly) on s and u. For instance, when
u = 0, p is larger than θ when s is larger than θ, that is when Informed has “a good news about θ”. This
dependence implies that the price conveys information about s!

Indeed we have at equilibrium:
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s̃ =
[(1− µ)tUτθ + µtIτε] p̃− ((1− µ) τθtU ) θ + ũ

µtIτε

So that the best prediction of s varies with p :

E (s̃/p) =
[(1− µ)tUτθ + µtIτε] p− ((1− µ) τθtU ) θ

µtIτε

In fact, Uninformed (but sophiticated) traders should have used this information to set their demand (which
they have not at this first naïve stage).

But if they modify their demand function accordingly to take into account this information, this will modify
the formula of the price equilibrium, function of s and u! this will in turn modify the information inferred by
Uninformed...and so on!

The idea of Rational Expectation Equilibrium consists in finding a price formula which is “self fulfilling”. If
the price formula is p = f(s, u) and if the traders use this information then the equilibrium price will be
precisely f(s, u) !

Definition 47. A REE is a price function p = f (s, u) such that, if traders know this price function, they
infer information from price and set their demand accordingly. Doing this it turns out that equilibrium price
will be precisely f(s, u). In some sense, this type of equilibrium is the limit of the sequence of inference
mentioned above.

5.2.2. Rational Expectation Equilibrium (Grossman and Stiglitz). The idea is to find a linear
price formula p = a+ bs− λu which is self fulfilling.

Let us be more precise.

Uninformed only observe p :

E
(
θ̃/JU

)
= E

(
θ̃/a+ bs̃− λũ = p

)
= E (s̃+ ε̃/bs̃− λũ = p− a)

which gives, using the fact that all variables are normal :

E
(
θ̃/JU

)
= θ +

bσ2
s

b2σ2
s + λ2σ2

u

(
p− a− bθ

)
or, equivalently

E
(
θ̃/JU

)
= θ +

bτu
b2τu + λ2τs

(
p− a− bθ

)
= θ +

bτu
k

(
p− a− bθ

)
In the above formula we have set k = b2τu + λ2τs , (which depends on b and λ).
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In the same way :

var
(
θ̃/JU

)
= var (s̃+ ε̃/bs̃− λũ = p− a) = σ2

s + σ2
ε −

b2σ4
s

b2σ2
s + λ2σ2

u

= σ2
ε +

λ2σ2
uσ

2
s

(b2σ2
s + λ2σ2

u)
= σ2

ε +
λ2

k

The Uninformed demand is hence :

XU (p/JU ) = tU
1

σ2
ε + λ2

k

[
θ +

bτu
k

(
p− a− bθ

)
− p
]

The Informed has the same demand function :

XI(p/JI) = tIτε (s− p)

Market clearing gives :

µtIτε (s− p) + (1− µ)tU
1

σ2
ε + λ2

k

[
θ +

bτu
k

(
p− a− bθ

)
− p
]

= u

Identifying with p = a+ bs− λu gives for the coefficients of u and s , and for the constant a :

µtIτελ+ (1− µ)tU
1

σ2
ε + λ2

k

[
−bλτu
k

+ λ

]
= 1

−µtIτεb+ (1− µ)tU
1

σ2
ε + λ2

k

[
bτu
k
b− b

]
= −µtIτε

(
−µtIτε − (1− µ)tU

1

σ2
ε + λ2

k

)
a+ (1− µ)tU

θτs

σ2
ε + λ2

k

(
λ2

k

)
= 0

That gives :

(5.2.1) λµtIτε = b

Such that :

p = a+ λ (µtIτεs− u)

reinjecting 5.2.1 in k = b2τu + λ2τs gives :
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k = λ2
(

(µtIτε)
2
τu + τs

)
We have hence :

var
(
θ̃/JU

)
= σ2

ε +
1

(µtIτε)
2
τu + τs

=
1

τ

which allows to find equations giving λ and a :

µtIτελ+ (1− µ)tUτ

[
−µtIτετu1

τ −
1
τε

+ λ

]
= 1

(−µtIτε − (1− µ)tUτ) a+ (1− µ)tUτθ

(
τs

1
τ −

1
τε

)
= 0

It is interesting that w = s− 1
µtIτε

u is the “noisy” information conveyed by p on s. Indeed :

E (w/s) = s and var (w/s) = 1
µtIτετu

• Informed perfectly informed

Obviously, as in the naïve equilibrium, when τε is infinite (Informed are perfectly informed) then the price
gives perfect information on s (and p = s).

• No noisy traders

More interestingly, if there are no “noisy” traders σu = 0, then the price gives also perfect information on s.
then var

(
θ̃/JU

)
= σ2

ε = var
(
θ̃/JI

)
This gives also p = s! Indeed market clearing gives :

µtIτε(s− p) + (1− µ) tUτε

[
θ +

(
p− a− bθ

)
b

− p

]
= 0

which implies b = 1 and a = 0 as soon as µ > 0.

• No insider

What happens when µ = 0 (no insider)? In that casewe have :

λ =
σ2
θ

tU
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a = θ

Which means :

p = θ − σ2
θ

tU
u

To sum up :

Proposition 48. In the Rational Expectation Equilibrium, if σu = 0 (no noisy traders), and µ > 0 then the
equilibrium price is p = s. That means that the market is strongly efficient : the price reflects all public and
private information. When µ = 0 the equilibrium price is θ − σ2

θ

tU
u, which gives obviously p = θ when there

are no noisy traders.

Remark 49. The Grossman Stiglitz paradox. Suppose that prior to trading people decide weather to acquire
or not the signal s at a fix cost k, and that there are no noisy traders. If µ = 0 and if k is not too large,
it is interesting to buy information : it can be easily shown indeed that the expected utility achieved when
informed is larger than the one when everybody is non informed. But as soon as µ > 0 , the price becomes
fully informative and it is not worth while to buy information since this information becomes free through
price!

5.3. Bid ask spread (Glosten and Milgrom)‘

Asymmetry of information can be the source of some market characteristics.

Consider the following model. There is one risky asset whose liquidation value at date 1 is either θ with
probability π or θ with probability 1-π. One unit is traded at time zero. There are three types of traders :

- informed traders : they know in advance the value θ at time 1 : they buy if the price is lower than θ and
sell if the price is larger.

- liquidity traders: at any price they sell with probability 1
2 and buy with probability 1

2 .

- market makers : they post a bid b (max price to buy) and an ask a (min price to sell) b ≤ a.

The proportion of informed traders is µ.

The market maker does not know if he faces an informed or a liquidity trader.

Assume θ ≤ b ≤ a ≤ θ

We have the following “tree” :



5.3. BID ASK SPREAD (GLOSTEN AND MILGROM)‘ 64

We read the diagram as the following : with probability µ the market maker faces an informed. In this case
he will buy if θ = θ (with probability 1− π) and sell if θ = θ (with porobability π). With probability 1− µ
this is an uninformed who sells or buys with probability 1/2.

Assume first that a = b

With prob 1 − µ the market maker faces a non informed trader. The expected profit of the market maker
will be : 1

2 (a− E [θ]) + 1
2 (E [θ]− a) = 0

With prob µ it is an informed : he buys if θ = θ and sells if θ = θ

That is with probability 1 − π the profit is a − θ and with probability π the profit is θ − b which are both
negative values!

This comes from the asymmetry of information : inferior information of market makers implies negative
profit if ask and bid are equal. A bid-ask spread allows to restore non negative

profit.

Indeed assume θ ≤ b < a ≤ θ. It is usefull to set the random variable D “demand” of the trader : this variable
has two states D =sell and D =buy. In the graph above there are four terminal nodes : 2 when D =sell and
2 when D =buy.

The probabilities of each node is easy to compute.
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D Sell Buy total

Informed µπ µ (1− π) µ

Liquidity 1
2 (1− µ) 1

2 (1− µ) 1− µ
Total µπ + 1

2 (1− µ) µ (1− π) + 1
2 (1− µ) 1

The market maker profits are in each case :

Π Sell Buy

Informed θ − a b− θ
Liquidity E [θ]− a b− E [θ]

To determine the values of a and b, Glosten and Milgrom assume that the “average” (expected) profit made
when he sells (resp buys) is zero :

E [Π/D] = 0

We have Pr (Informed/D = sell) = µπ
µπ+ 1

2 (1−µ)
and Pr (Liquidity/D = sell) =

1
2 (1−µ)

µπ+ 1
2 (1−µ)

So that µπ
µπ+ 1

2 (1−µ)

(
θ − a

)
+

1
2 (1−µ)

µπ+ 1
2 (1−µ)

(E [θ]− a) = 0 which implies :

a =
µπθ + 1

2 (1− µ)E [θ]

µπ + 1
2 (1− µ)

In the same way :
µ(1−π)

µ(1−π)+ 1
2 (1−µ)

(b− θ) +
1
2 (1−µ)

µ(1−π)+ 1
2 (1−µ)

(b− E [θ]) = 0

b =
µ (1− π) θ + 1

2 (1− µ)E [θ]

µ (1− π) + 1
2 (1− µ)

When µ is large, a is close to θ and b is close to θ. Conversely when µ is small, a and b are close to E (θ).

5.4. High Frequency trading : arm’s race

The question we adress in this section are the following : does the prevalence of fast traders (who practice
high frequency trading) enhance or deteriorate the functioning of markets? Do market forces lead to an
optimal amount of investment in fast trading technologies? Is policy intervention called for?

On the one hand, highspeed market connections and information processing improve ability to seize trading
opportunities, which raises gains from trade. From this viewpoint, HFT (high frequency trading) allows a
better adjustment to equilibrium and hence is supposed to improve efficiency. But, on the other hand, when
slow and fast traders are both active on a market, fast traders can process information before slow traders,
which can generate information asymmetry and hence adverse selection. This can imply market inefficiency
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as for instance slow trader eviction. To avoid this “adverse selection” phenomenon, slow traders can be
induced to (over)invest in fast trading technologies. Investment waves can arise, where institutions invest
in fast trading technologies just to keep up with the others. When some traders become fast, it increases
adverse selection costs for all, i.e., it generates negative externalities. Therefore equilibrium investment can
exceed its welfare maximizing counterpart.

5.4.1. The model. Several institutions are present on the market : fast traders, slow traders and
market makers that offer counterpart. Institutions can buy or sell only one share of one asset or abstain
from trading. Their valuations for the asset are the sum of a common value component and a private value
component. The common value, v, can be equal to µ + ε or µ − ε with equal probability. Private values
(that means willingness to pay or to be payed) are i.i.d across institutions and can be equal to v+ δ or v− δ
with equal probability. Differences in private values capture in a simple way that other considerations than
expected cashflows.

Fast traders access and process information on v before slow institutions. To capture this in the simplest
possible way, we assume that, before trading, fast institutions observe whether v = µ + ε (good news) or
v = µ− ε (bad news). Fast traders know in advance the liquidation value.

Slow institutions don’t observe whether v = µ+ε or v = µ−ε and find a trading counterparty with probability
ρ < 1.

The proportion of fast traders is α, of slow ones is 1− α.

When an institution gets a trading opportunity, it decides whether to buy one share (ω = 1), sell one share
(ω = −1), or abstain from trading (ω = 0). We assume that the trade of the institution is executed at a
price equal to the expectation of the common value conditional on its order: E(v/ω), computed with rational
expectations about all equilibrium strategies, as in Glosten and Milgrom. It amounts to asay that there is
perfect competition among market makers. So that :

• the ask equilibrium price is :

a = E (v/ω = 1)

• the bid equilibrium price is :

b = E (v/ω = −1)

To solve the model, compute first the valuations for the different traders :
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good news bad news

Fast traders with high valuation µ+ δ + ε µ+ δ − ε
Fast traders with low valuation µ− δ + ε µ− δ − ε
Slow traders with high valuation µ+ δ

Slow traders with low valuation µ− δ

To develop the model, assume that ε > δ > ε
2 which implies δ > ε− δ

So that we have :

µ− δ − ε < µ− δ < µ+ δ − ε < µ < µ− δ + ε < µ+ δ < µ+ δ + ε

The market maker faces different types of traders with the probabilities depicted in the following table.

good news bad news
probability 1

2
1
2

Fast traders with high valuation α
2

α
4

α
4

Fast traders with low valuation α
2

α
4

α
4

Slow traders with high valuation ρ 1−α
2 ρ 1−α

2

Slow traders with low valuation ρ 1−α
2 ρ 1−α

2

Slow traders with no counterparty (1− ρ) (1− α) (1− ρ) (1− α)

Total 1

We are studying the case case of ω = 1 , that is the case where the trader, facing an ask price a decides to
buy or not.

• If µ + δ < a < µ + δ + ε , only fast trader with high valuation and good news buy (cell 1 on the
following table)
• If µ− δ+ ε < a < µ+ δ , fast trader with high valuation and good news and slow traders with high

valuation buy (cells 1 and 2)
• µ + δ − ε < a < µ − δ + ε , fast trader with good news and slow traders with high valuation buy

(cells 1,2 and 3)
• µ− δ < a < µ+ δ − ε , fast trader with good news, fast traders with bad news and high valuation,

and slow traders with high valuation buy (cells 1,2, 3 and 4)
• µ − δ − ε < a < µ− δ , everybody buys except fast trader with low valuation and bad news (cells

1,2, 3 ,4 and 5)
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When price decreases good news bad news

Fast traders with high valuation 1 :
(
α
4

)
4 :
(
α
4

)
Fast traders with low valuation 3 :

(
α
4

)
don’t buy

Slow traders with high valuation 2 :
(
ρ 1−α

2

)
Slow traders with low valuation 5 :

(
ρ 1−α

2

)
On the following graph we show the demand (price on the vertical axis)

The demand D is hence :

• If µ+ δ < a < µ+ δ + ε : D = α
4

– a = µ+ δ : D = α
4 + βHρ

1−α
2 , where βH is the probability a slow trader with high valuation

buys.
• If µ− δ + ε < a < µ+ δ , D = α

4 + ρ 1−α
2

– a = µ − δ + ε, D = α
4 + ρ 1−α

2 + βGL
α
4 , where βGL is the probability a fast trader with low

valuation and good news buys
• µ+ δ − ε < a < µ− δ + ε , D = α

2 + ρ 1−α
2

– a = µ + δ − ε, D = α
2 + ρ 1−α

2 + βBH
α
4 , where βBH is the probability a fast trader with high

valuation and bad news buys
• µ− δ < a < µ+ δ − ε , D = 3α

4 + ρ 1−α
2

– a = µ − δ, D = 3α
4 + ρ 1−α

2 + βLρ
1−α

2 , where βL is the probability a slow trader with low
valuation buys

Let us compute the different probabilities. The first one is the probability that the trader buys, facing
a < µ+ δ + ε, that is the cells 1,2,3,4 and 5.

Pr(ω = 1) =
α

4
+ βBH

α

4
+ βGL

α

4
+ ρ

1− α
2

(βH + βL)

Among these, some cases are such that v = µ+ ε :

Pr (v = µ+ ε/ω = 1) Pr (ω = 1) =
α

4
+ βGL

α

4
+ ρ

(1− α)

4
(βH + βL)

And others where v = µ− ε

Pr (v = µ− ε/ω = 1) Pr(ω = 1) = βBH
α

4
+ ρ

(1− α)

4
(βH + βL)

So that the value E (v/ω = 1) is easily computed :

E (v/ω = 1) = µ+
α (1 + βGL − βBH)

α (1 + βBH + βGL) + 2ρ (1− α) (βH + βL)
ε
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There is a first (intuitive) equilibrium where a∗ = µ+ ε . In that case βBH = βGL = βH = βL = 0, and we
have µ+ δ < a∗ < µ+ δ + ε , only fast traders with good news and high valuation buy. That means that no
trade occurs in the other cases.

Theorem 50. For any value of the parameter α there always exists a “crowding out” equilibrium where only
fast traders with high valuation and good news buy : .a∗ = µ+ ε. We call that equilibrium P1

Now describe other possible equilibria

Theorem 51. When α ≤ 2ρδ
ε−δ+2ρδ , then there exists an equilibrium such that βGL = βBL = βL = 0 and

βH = α(ε−δ)
2ρ(1−α)δ , for which the equlibrium price is a∗ = µ+ δ . This equilibrium is called M1

For lower values of α:

Theorem 52. For lower values of α 2ρ(ε−δ)
δ+2ρ(ε−δ) ≤ α ≤ 2ρδ

ε−δ+2ρδ there exists an equilibrium such that βGL =

βBL = βL = 0 and βH = 1 for which the equlibrium price is a∗ = µ+ α
α+2ρ(1−α)ε. This equilibrium is called

P2

There are other equilibria for lower values of α. We don’t derive them and study now the incentive to invest
in fast technologies. The question is : when α is given, does a low trader have incentive to invest in fast
trading strategies?

The expected payoffs are for fast traders : 1
2 (µ+ ε+ δ − a∗) + 1

2 (µ+ ε− δ − a∗)βGL , and for low traders
ρ (µ+ δ − a∗)βH , the gives for P1 and P2 equilibria :

For P1 : fast obtain 1
2δ and low obtain 0.

For P2 : fast obtain 1
2

(
ε+ δ − αε

α+2ρ(1−α)

)
and slow : ρ

(
δ − αε

α+2ρ(1−α)

)
,

We remark that that when 2ρ(ε−δ)
δ+2ρ(ε−δ) ≤ α ≤ 2ρδ

ε−δ+2ρδ , P2 equilibrium is better than P1 for both types of
traders. We assume that P2 will be the actual equilibrium for this values of α.

Consider a slow trader. What is is expected increase of surplus if he invests in fast technologies? The values
above give that :

When 2ρ(ε−δ)
δ+2ρ(ε−δ) ≤ α ≤

2ρδ
ε−δ+2ρδ the gain is : 1

2

(
ε+ δ − αε

α+2ρ(1−α)

)
-ρ
(
δ − αε

α+2ρ(1−α)

)
ερ+ δ (1− 2ρ)

: δ -ρ (2δ − ε)

5.5. The capital asset pricing model

5.5.1. The principle of diversification. The principle of diversification is a central principle in finance
and insurance.
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The purpose of this first section is to give a meaning to the phrase “do not put all your eggs in one basket” ,
which is the popular expression of the principle of diversification.

The idea of diversification principle is actually quite simple, and makes a clear statement: (unless they are
perfectly correlated ) half the sum of two identically distributed random variables, having a finite expectation,
is less risky than each of them. for example, if we imagine two baskets each with the same probability p to
fall (and thus cause the loss of eggs) , put an egg in each basket is less risky than putting them both in one .

Indeed in the first case it will be possible to eat 0 eggs with probability p2 , 2 eggs with probability (1− p)2}
, And 1 egg with probability 2p(1− p). In the second 0 with probability p and 2 with probability 1− p . The
probabilities of the extreme, 0 and 2 , decreased : p to p2 a decrease of p(1 − p) ) and (1 − p) to (1 − p)2 ,
while the medium event, 1 egg , has its probability increased of exactly 2p(1− p) .

If X̃ is the random variable giving 1 if the first basket remains intact and 0 if it falls, Ỹ defined in the same
manner for the second rack , is a 2X̃ and 2 Ỹ are riskier than X̃ + Ỹ .

This notion of risk reduction is associated to a “concentration” of the probability distribution function. It can
be shown that if Ã and B̃ have the same finite expectation, Ã is more risky than B̃ if and only if there exists
a random variable ε̃ such that Ã = B̃ + ε̃ with E

(
ε̃/B̃

)
= 0. Ã is a noisy transformation of B̃. Obviuously,

if the variables have finite variances this implies that var
(
Ã
)
≥ var

(
B̃
)

In the case of n independent and identically distributed random variables we can state the following general
result :

Proposition 53. if x̃i are n independent real random variables and identically distributed such that |E (x̃i)| <
+∞, then ∀αi , N positive real numbers of sum 1 (

∑
αi = 1) x̃ 1

n
=

∑
x̃i
n is less risky than x̃α =

∑
αix̃i. (and

in particular than each of the x̃i) : that means that the probability distribution of x̃ 1
n
is more concentrated

than that of x̃α or alternatively that, for all α, there exists ε̃ such that x̃α = x̃ 1
n

+ ε̃ with E
(
ε̃/x̃ 1

n

)
= 0.

In particular if the variables have a finite variance σ2 we have :

var (x̃α) =
(∑

α2
i

)
σ2

Which is minimum for αi = 1
n

Obviously the situation is slightly more complex when the random variables are correlated. First, consider
two random variables x̃1 and x̃2 with the same variance σ2 but not necessarily independent . A study of
variance allows to get an idea of the risk of a convex combination of the two variables.

Consider t(α) :

t(α) =
var (αx̃1 + (1− α)x̃2)

σ2
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= α2 + (1− α)2 + 2α(1− α)
cov(x̃1, x̃2)

σ2

t(α) is less than 1, because cov(x̃1, x̃2) < σ2. it is minimal for α = 1/2.

But now if , x̃1 and x̃2 have not the same variance, with for example var(x̃1) ≤var(x̃2) . One computes :

Σ2(α) = var (αx̃1 + (1− α)x̃2)

= α2var(x̃1) + (1− α)2var (x̃2) + 2α(1− α) cov(x̃1, x̃2)

= α2 (var(x̃1) + var (x̃2)− 2cov(x̃1, x̃2)) + 2α (cov(x̃1, x̃2)− var (x̃2)) + var (x̃2)

As this must be always positive, the discriminant must be negative :

|cov(x̃1, x̃2)| ≤
√

var (x̃1) var (x̃2) ≤ var (x̃2)

This means that the correlation coefficient cov(x̃1,x̃2)√
var(x̃1)var(x̃2)

lies between -1 and 1!

We have :

dΣ2

dα
= α (var(x̃1)− cov(x̃1, x̃2))− (1− α) (var(x̃2)− cov(x̃1, x̃2))

The minimum is obtained for :

α∗

1− α∗
=
var(x̃2)− cov(x̃1, x̃2)

var(x̃1)− cov(x̃1, x̃2)

That is
α∗ =

var(x̃2)− cov(x̃1, x̃2)

var(x̃1) + var(x̃2)− 2cov(x̃1, x̃2)

α∗ belongs to [0, 1] if :

var (x̃1)− cov(x̃1, x̃2) ≥ 0

That we write :

cov(x̃1, x̃2)

var (x̃1)
≤ 1
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cov(x̃1,x̃2)
var(x̃1) is the “beta” coefficient β(x̃2/x̃1) of 2 with respect to 1 : even if variance of 2 is larger than

that of 1, a combination of the two assets allows to decrease the risk below that of 1 if β(x̃2/x̃1) ≤ 1. If
τ = cov(x̃1,x̃2)√

var(x̃1)var(x̃2)
is the correlation coefficient, this means that the risk can be diminihed below the lowest

risk if τ
√
var (x̃2) ≤

√
var (x̃1) (which is always true if τ ≤ 0).

However, if it is not the case, the minimal risk is obtained for α /∈ [0, 1].

5.5.2. Portfolio choice. In this section we propose to analyze the problem of portfolio choice in general
. An investor has 1 euro, how should it be allocated among the various assets available? Obviously the answer
depends on his attitude to risk. We will assume here that our investor uses the mean-variance criterion, i.e.
he evaluates E(ṽ) − 1

2θvar(ṽ) to compare the random variables. This is the case, in particular, when all
variables are gaussian and the decision maker has a concave utility function.

Consider K financial assets ,k = 1, ...,K . Income from asset k is a real random variable ãk : the income
(cash) that provides the risky asset in the future. This random variable is assumed to be known through
statistical studies. We note pk the market price of asset k . It is quite convenient to define the return on
assets k as the random variable that measures the income for one euro : R̃k = ãk

pk
. There is also a risk-free

asset , the asset 0 , which givesR0 ( nonrandom ) euros per euro invested . A risky portfolio is a vector θ,
each component θk measuring the amount of asset k held.

The random income of a portfolio is
∑
ãkθk and its cost tθp.

One can write the income as a function of yields :

ṽ =
ãk
pk
pkθk = R̃kxk = txR̃

Wherexk = pkθk is the expenditure to purchase the asset k.

Suppose our investor has a euro to be shared among different assets. He must choose to spread this euro
between risk-free asset (x_{0}) and risky assetsx = (x1, ...xK) with 1 is the vector withK components all
equal to 1 :x0 + tx1 = 1 . This strategy gives him for one euro , an income equal to x0R0 +t xR̃. =

R0 + tx(R̃−R01).

We se tρ̃ = R̃ − R01 , the vector of excess returns over the risk-free asset . Income from invested euro is
equal to R0 + txρ̃ .

The problem for the investor is to choose the optimal x.

Before doing computations, use a graphical reasonning. The following graph represents each portfolio by a
point whose coordinates are the standard deviation (that is the root square of the variance

√
var(ṽ)) of its

return on the horizontal axis and the expectation E (ṽ) on the vertical.
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The shaded area is the set of all the possible portfolios containing only risky assets. Consider then a portfolio
in that area and combinate it with the risk free asset. Say for instance that you put 1 − x0 euros on this
portfolio and x0 on the risk free asset. The expectation will be E (w̃) = x0R0 +(1−x0)E (ṽ) and the standard
deviation

√
var (w̃) = (1− x0)

√
var (ṽ). The expected excess return is E (w̃) = (1− x0) (E (ṽ)−R0) so that

this strategy is such that E(w̃)−R0√
var(w̃)

= E(ṽ)−R0√
var(ṽ)

. The point obtained is on the line between the point (0, R0) and

the point
(√

var (ṽ),E (ṽ)
)
whose slope is exactly E(ṽ)−R0√

var(ṽ)
which is called “the Sharpe ratio” of the portfolio.

Hence, all the possible combinations are obtained by drawing lines between the shaded area and the point
(0, R0).

For portfolio with a given standard deviation (a given risk) we seek those with the maximum expected return.
To do this consider the point M which has the maximal Sharpe ratio in the shaded area. combining this
portfolio with the risk free asset give portfolios on the bold line. Obviouly, the region above this line cannot be
reached : there are no feasible combination that gives these expectation and standard deviation. Conversely,
the points below are all feasible.

The bold line is hence the “efficiency frontier” of the market : efficient points (those with maximal expected
return at agiven risk) are on this line. M is the market portfolio : all the investors share their investment
between the risk free asset and this particular portfolio.

This result can be derived more formally.

We have :

{
E(w̃) = R0 + txE(ρ̃)

var(w̃) = E
[
(ṽ − E(ṽ))2

]


var(w̃) = E
[
(txR̃− txE(R̃))2

]
= E

[
tx(R̃− E(R̃))t(R̃− E(R̃))x

]
= txE

[
(R̃− E(R̃))t(R̃− E(R̃))

]
x
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set
Ω = E

[
(R̃− E(R̃))t(R̃− E(R̃))

]
Ω is called the matrix (symmetric) of variance-covariance of assets. The ij element equals σij = E

[
(R̃i − E(R̃i))(R̃j − E(R̃j))

]
.

σij is the covariance between assets i and j . The formula above shows that this symmetric matrix is positive
( the associated quadratic form is positive : xtΩx is a variance , which is positive ) .

Proposition 54. To sum up, the strategy (x0, x) gives R0 +txE(ρ̃) on average with a variance equal to txΩx

.

In the following if ṽ is a random variable , we note v its expectation. Here ρi = E(ρ̃i), Ri = E(R̃i).

How to choose between all possible strategies ? Clearly two strategies give the same expectation , any risk-
averse investor prefers the strategy of minimum variance. Therefore fix our investor expected return at m
and seek the vectors x of RK that minimizes the variance and give m as expected return . Consider the
optimization problem (P) :

(P )

{
min
x

(txΩx)

txρ+R0 = m

Define a new scalar product :

Definition 55. < x, y >= txΩy is a scalar product (quadratic positive definite form) note ‖ x ‖, the
associated norm.

The problem becomes :

(P )

{
min
x
‖ x ‖

< Ω−1ρ, x >= m−R0

This amounts to find the point of the affine hyperplane ( < Ω−1ρ, x >= m − R0), that is the closest from
0. This point is the orthogonal projection x∗ of 0 on this hyperplane . It is defined by two equations with
unknown x∗ and λ :

{
x∗ = λΩ−1ρ

< Ω−1ρ, x∗ >= m−R0

The first one says that x∗ is colinear with the orthogonal vector Ω−1ρ of the hyperplane, The second says
that tis projection belongs to this affine hyperplane.
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• An important note should be made x∗ is a vector which is proportional to the vector Ω−1ρ which
does not depend on m . In other words, regardless of the expected return required , the structure
of the risky portfolio is identical. Structure refers to the relative proportion of different risky assets
.
• Of course we can easily solve the above system :

x∗ =
(m−R0)
tρΩ−1ρ

Ω−1ρ

• How our investor chooses the level he m ? Obviously this is determined by his tradeoff between
mean and variance , maximize wrt to m :

E(w̃)− 1

2
θvar(w̃) = m− 1

2
θ(m−R0)2 1

tρΩ−1ρ

Definition 56. One calls market portfolio the portfolio xm = Ω−1ρ
t1Ω−1ρ = µΩ−1ρ , that portfolio contains only

risky assets in the relative proportions defined by the solutions of problems (P). The yield of this portfolio is
: R̃m = R0 + txmρ̃, The variance is :

var(R̃m) = txmΩxm

Moreover:

(Ωxm)i =
∑
j

σijx
m
j

= cov(R̃i,
∑

R̃jx
m
j )

= cov(R̃i, R̃m)

This portfolio is called the market portfolio because, under the investors mean-variance assumption , the
above shows that all individuals demand a portfolio whose risky component is proportional to this portfolio.
It follows that the total demand of all the portfolios held the same structure (in their risky part) . Of course,
a very risk-averse individual will ask a relative little amount of this risky portfolio and focus his investment
on the risk-free asset . Instead, a less risk-averse individual will choose a x0 smaller. It is as if each investor
was buying a piece of the total market capitalization , piece more or less according to risk aversion !

5.5.3. Capital asset pricing model formula. The above leads to find one of the most famous of
finance formulas.

One has :

Ωxm = µρ

var(R̃m) = txmΩxm = µtxmρ = µ(Rm −R0)
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This implies :

Ωxm

var(R̃m)
(Rm −R0) = ρ

Coordinate by coordinate:

cov(R̃i, R̃m)

var(R̃m)
(Rm −R0) = (Ri −R0)

Proposition 57. For any asset i its average outperformance over the risk-free asset Ri−R0 is proportional
to the outperformance of the market portfolioRm−R0. The proportionality factor is the coefficient βi , relative
to the market portfolio .

Ri −R0 = βi(Rm −R0)

βi =
cov(R̃i, R̃m)

var(R̃m)


